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Abstract

This document presents three individual methods for real-time lighting: radiosity-based
light-maps, dynamic Phong shading combined with stenciled shadow volumes imple-
mented in programmable graphics hardware, and lighting with spherical harmonics.
Each method is introduced and presented both from a theoretical and practical point
of view. All methods have been implemented in the framework of the Ca3D-Engine.
Wherever applicable, interesting algorithms and implementation details (such as opti-
mizations) are pointed out and discussed in depth.

New aspects elaborated in this thesis include optimizations of shadow volumes for
meshes that are organized in BSP trees and the presentation of the conceptual and
algorithmic parallels between Spherical Harmonic Lighting and traditional light-maps
with radiosity: Bounce-transfer SH light coefficients are precomputed in a way that is
analogous to a typical radiosity algorithm, and the storage of the results is achieved sim-
ilarly to that of regular light-maps. Moreover, algorithmic enhancements are presented,
including per-pixel evaluation of SHL, the combination of SHL with normal-mapping,
compression of SH coefficients, and filtering of SH rendering.
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1 Introduction

Recent years have seen a boom and shown substantial advances in 2D and 3D computer
graphics: numerous applications like flight simulators, computer games, software for
architectural purposes, visualization in medical research and molecular biology, software
for testing human effectiveness1, extensive use in the film industry, visualizations and
simulations in automobile and aircraft design and many others express an ever increasing
demand in constantly progressing 3D graphics rendering.

The two ultimate goals that 3D graphics has to achieve, and towards which it is
constantly developing, are realism (or at least the illusion thereof), and real-time.

In the past, researchers in computer science, software engineers and hardware vendors
have taken great steps towards these goals: new methods and ideas have been developed
and simultaneously vendors have put new programmable graphics processors at main-
stream prices on the market that permit low-cost implementation of the new theories in
consumer hardware.

Nonetheless, limits both in algorithms and hardware power continue to govern the
balance between realism and real-time: Realism often requires so much processing time
that achieving real-time frame rates is not possible. Inversely, achieving real-time 3D
graphics often means cutting realism.

A very important aspect of describing both reality as well as computer synthesized
images is light and lighting. The computer graphics community models the light that
occurs in the real physical world with various degrees of accuracy. These models often
take widely varying approaches, each with its own interesting aspects, strengths and
weaknesses.

This thesis discusses three state-of-the-art techniques for real-time lighting of three-
dimensional scenes. Each technique is built on a certain lighting model and a theoretical
foundation, and employs contemporary methods for implementation.

1.1 Overview

The contents of this thesis is organized as follows:

• Section 2 outlines the research efforts and products that preceded this thesis.

• The first lighting method that is discussed is Light-Maps, presented in section 3.

• Section 4 details the concepts of contemporary hardware-accelerated lighting. This
includes algorithms related to the Phong shading and lighting models, combined
with stenciled shadow volumes for casting dynamic shadows.

• The most contemporary and most interesting method for real-time lighting, light-
ing with Spherical Harmonics, is presented in section 5.

1For example, the U.S. Air Force Research Laboratories for Human Effectiveness employ 3D graphics
powered by the Ca3D-Engine for testing the visuo-spatial working memory of their pilots.
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1 Introduction

• Section 6 discusses various in-depth implementation aspects that occur with the
presented lighting methods.

• The thesis concludes with a summary and discussion in section 7.
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2 Previous Work

Light-Maps and Radiosity

Computer-aided synthesis of realistic images by employing precomputed light-maps for
fake-lighting the scene geometry became popular as soon as consumer desktop computers
became fast enough to handle it: When Id Software Inc. released their first-person-
shooter Quake in 1996, all rasterization, texture lookups, and other rendering tasks
were achieved in software, on the general-purpose CPU and with handwritten assembly
routines. Among other features, Quake became known for its ability to modulate the
regular texture-map with the value of a grayscale light-map with a minimum of assembly
instructions (see [Abr96] for details), which made it the most advanced game rendering
system of its time. The light-maps were simple low-res textures, created by algorithms
that were simply “tweaked until they looked good” (John Carmack). No physically
sound illumination model was employed at that time.

A couple of years later, the introduction of 3D-accelerating graphics boards spread the
use of light-maps even further. Their multi-texturing features that were accessible via
convenient high-level APIs such as OpenGL made it easy to employ fully colored RGB
light-maps at very high speeds. Also the concepts and applications to light-mapping have
been extended and varied over time: Segal, Korobkin, vanWidenfelt, Foran and Haeberli
projected in 1992 light-maps into the scene rather than just modulating regular textures
with them, and Heidrich, Kautz, Slusallek and Seidel used them for special effects like
slide projectors in 1998.

Moreover, the trend moved to precompute the light-map contents with expensive but
high-quality global illumination methods, based on thorough and physically accurate
light models: Radiosity models have their origin in the field of thermal engineering
(heat transfer), for which the first global methods were developed. After the transfer to
lighting applications and the acknowledgement of the stunning results, a lot of research
efforts were invested into making the implementations more practically feasible, and
to overcome the inherent problems and limitations: While the initial formulation of
radiosity methods only included Lambertian diffuse reflection, ways have also been found
to take specular reflections into account. Other researchers were able to factor additional
media like smoke and haze into the radiosity formulation. Another very important aspect
is the effort that has been made to reduce the computational complexity of the numerical
radiosity solutions. Various methods have been developed that approach the problem in
many different ways. A good survey about global illumination and the radiosity method
is [CW93]: One chapter covers the history of radiosity, along with dozens of references
to original literature. The rest of the book teaches both the theoretical and practical
aspects of modern radiosity algorithms. [FvDFH90] also contains a very good treatment.
Even today, global illumination remains a topic of ongoing research.

Dynamic Lighting

Independent of and chronologically actually before the exploration of global lighting, the
computer graphics community created local illumination models. These models describe
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2 Previous Work

the color of a point on a surface that is directly lit by a number of light sources. Foley
et al. ([FvDFH90]) present these models, which take ambient light, diffuse reflection,
atmospheric attenuation and specular reflection into account. Phong and Blinn both
provided variants for the specular reflection illumination model, and Warn extended the
point-light-source model further. The common property of these models is that they are
approximations of the laws of optics and radiation, and thus have no physical foundation.
They are still in common use because they yield pleasing and attractive results and are
simple to compute with minimal effort.

Foley et al. continue to organize or “fit” the illumination models into the broader
framework of shading models, that in turn state which, how and when an illumination
model is employed. Interpolated or Gouraud shading evaluates the illumination model
only at each vertex of a polygon, and interpolates the resulting color across the polygon
area. Phong shading, on the other hand, means to perform the illumination computa-
tions at every rasterization fragment.

Phong shading was and still is frequently employed in Pixar’s PhotoRealistic
RenderMan r© that is capable of rendering photo-realistic images. This however is usu-
ally only possible offline, at noninteractive rates. In parallel, graphics boards with 3D-
acceleration started to offer interactive frame-rates, but did not offer enough flexibility
to provide much better than Gouraud or very limited Phong shading.

A couple of years ago, 3D-accelerator vendors provided their consumer boards for
the first time with a programmable graphics processing unit. Initially only accessible
in assembly language dialects, higher level tools and driver bindings to contemporary
graphics APIs were quickly developed. Examples include ATIs RenderMonkey(TM) tool
suite, NVidias Cg GPU programming language, the latest versions of Microsoft DirectX,
and the most recently introduced OpenGL 2.0.

It turned out that programmable, dedicated GPUs were indeed a revolutionary step:
While they did not introduce anything that was conceptually new, freely and flexibly
programmable pixel and vertex shaders carried almost all of the power of RenderMan
programmability to dedicated graphics hardware, which was able to achieve interactive
frame rates while executing the programs. Joining free programmability with the high
speed of dedicated hardware thus joined the best of both worlds.

Although arbitrarily sophisticated shading models can now be implemented, the hard-
ware development and performance improvements still continue. For performance rea-
sons, even the most recent commercial games like Doom3 from Id Software Inc. and
Half-Life 2 from Valve Corporation often do not implement more advanced shading
models than variants of the well-known Phong shading. The associated implementa-
tions come with their own interesting sets of properties and subtleties. They frequently
obtain their data for Phong shading from special texture-maps like diffuse-maps, bump-
or normal-maps, specular-maps, luminance-maps, etc. The central issue of texture (tan-
gent) space is addressed by Dietrich in [Die03].

The above-mentioned previous work in dynamic lighting was paralleled by complemen-
tary developments, especially with regards to global dynamic shadows. Shadow-Mapping
exploits the fact that when the scene is rendered from a light-sources point-of-view, the
resulting depth buffer can be considered as a precomputed light visibility test that can
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be used for determining shadows when the scene is rendered from the observer’s point-
of-view in a second step. Several papers and publications by graphics hardware vendors
detail how this principle can best be exploited on their proprietary hardware. More-
over, researchers have produced interesting variants, improvements, and extensions to
the basic shadow-maps principle: Brabec and Seidel combined them with light-maps and
extended them for soft shadows in 2000. They also describe antialiased shadows with
shadow-maps on graphics accelerated hardware in [BSa].

Another approach, the Shadow Volumes, was introduced by Crow in 1977. It was
provided with dedicated hardware support in 1985 and generalized over the years e.g. by
Bergeron in 1986. Heidmann in 1991 observed that Shadow Volumes can be implemented
well by exploiting the stencil buffer of graphics hardware. Unfortunately, the resulting
algorithm was not robust in many cases. Several authors (e.g. Diefenbach and Kilgard)
suggested workarounds to the problems, but the solutions remained “fragile”. Bilodeau
and Carmack observed in 2000 that the reversal of the depth comparison tests achieves
equivalent results to Heidmann’s original approach. The elimination of the far clip
plane finally made the method robust, as described in [EK02]. [EK03] and [MHE+03]
point out additional optimizations and improvements to the technique. [AAM03] and
[ADMAM03] extend the shadow volume technique to soft shadows, and [BSb] describes
how all shadow volume computations can be moved to the graphics hardware.

The Ph.D. thesis of Stefan Brabec ([Bra]) treats in detail both shadow-maps and
shadow volume techniques, including their extensions to soft shadows.

Spherical Harmonic Lighting

Lighting with Spherical Harmonics was first introduced by Peter-Pike Sloan, Jan Kautz
and John Snyder in [SKS02]: They precomputed global light transfer that was repre-
sented as a set of spherical functions and efficiently stored by the use of spherical harmon-
ics. The incident (potentially dynamic) light was also expressed via spherical harmonic
coefficients, and they showed that the final lighting computations can be performed en-
tirely on the spherical harmonics basis. Robin Green’s article [Gre03] is based on that
original paper and discusses the same topic from the more practical point-of-view of a
game developer. He includes source code fragments and many examples. An exemplary
project built on these papers with complete source code is available at Paul’s Projects
at http://www.paulsprojects.net. Annen, Kautz, Durand and Seidel continued their
research and employed “Spherical Harmonic Gradients for Mid-Range Illumination” in
[AKDS04]. Ren Ng, Ravi Ramamoorthi and Pat Hanrahan use a variant of the SH
approach in order also to take high frequency shadows into account ([NRH03]).

Other Related Work

Many (sub-)tasks in 3D computer graphics require spatial classification and navigation
facilities, for example for ray–polygon intersection tests. One of the most common and
best known data structures for these purposes is the Binary Space Partitioning Tree.
Originally only used for determining visible surfaces, Thibault and Naylor used BSP

13

http://www.paulsprojects.net
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trees in 1987 to organize arbitrary polyhedra. Despite the fact that BSP trees require
static geometry (otherwise the tree must be rebuilt), their benevolent properties have
made them indispensable until today: For example, they provide spatial sorting in linear
time and spatial classification in logarithmic time.

Seth Teller describes Potentially Visibility Sets in [Tel92] as a very powerful means to
precompute the mutual visibility of BSP leaf cells. The potential mutual visibility can
then be looked up at render time at nearly no cost. Subsequent developments to reduce
both the mathematical and computational costs of Tellers complex approach do exist,
as for example in some computer games and in my own implementation, however I’m
not aware of any other thorough scientific treatment.
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3 Radiosity based Light-Maps

This section presents the theory, principles, and algorithmic aspects of radiosity-based
light-maps. Light-maps are the oldest and best known lighting technique that is discussed
in this thesis.

3.1 Theory of Light-Maps

Light-maps store the solutions of algorithms that compute global lighting. Arbitrary
algorithms can be employed for this purpose and their results stored. For example,
Quake1 used an algorithm that was “just tweaked until it looked good” (John Carmack).
Even today many contemporary commercial products and games employ similarly simple
algorithms.

However, improvements during the last decade both in algorithmic research and com-
putational power clearly suggest employing radiosity algorithms for computing light-
maps. Cohen and Wallace [CW93] provide a thorough introduction to radiosity and the
underlying concepts of lighting. Ashdown [Ash94] describes radiosity from a more prac-
tical point of view and includes concrete examples and code. Foley et al. [FvDFH90]
have a text with a very good balance between theoretical backgrounds and suitability
for implementation.

Radiosity algorithms propose solutions to the rendering equation under the assumption
that only diffuse reflection occurs. The generic rendering equation

L(x′, ~ω′) = Le(x′, ~ω′) +
∫
S

fr(x) L(x, ~ω) G(x, x′) V (x, x′) dA (1)

can be simplified by this assumption, which implies that the BRDF component fr be-
comes independent of the incoming and outgoing directions, and that the outgoing
radiance from a Lambertian surface is the same in all directions. As is shown in [CW93],
equation 1 therefore reduces quite dramatically to

B(x) = E(x) + ρ(x)
∫
S

B(x′)
G(x, x′) V (x, x′)

π
dA′ (2)

This equation is called the Radiosity Equation.
As the quantity that is to be computed still appears both on the left-hand side and

on the right-hand side under the integral, it is almost impossible to solve this equation
analytically in a closed form. Therefore, the domain (surfaces) S must be discretized in
order to make them viable for numerical methods.

3.2 Properties of Radiosity Algorithms

Despite considerable efforts put into research of synthesising realistic images in real-
time with advanced ray-tracing techniques that produce results comparable to radiosity
methods, radiosity – being a method for computing global lighting – is still inherently
applicable only to mostly static scenes.
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3 Radiosity based Light-Maps

Radiosity is therefore characterized by precomputed light distributions that in turn
require a static scene and static area light sources. On the other hand, radiosity is also
view-independent, and therefore works well with a dynamic viewer.

3.3 CaLight: Computing the Light-Maps

A full radiosity implementation is provided by the CaLight component of the Ca3D-
Engine. The algorithms are described in considerable detail below, because in section 5.3
on Spherical Harmonic Lighting it will be shown that many concepts that are discussed
here do also apply to SHL. SHL, that can loosely be defined as “Radiosity with dynamic
light sources”, will employ many analogous but more sophisticated steps that build on
the details presented here. The subsequent sections build on the basics of the Ca3DE
framework that is laid out in section 6.1.

3.3.1 Extending the PVS to Surfaces

CaLight starts by extending the PVS information that has been precomputed for entire
leaves (see section 6.1.1) to individual surfaces.

Initially, a visibility matrix PVSsurfaces (an array) of n × n elements is allocated for
storing mutual visibility for all pairs of n surfaces. Each matrix element PVSsurfaces(i, j)
(where 0 ≤ i < n and 0 ≤ j < n) describes one of three relationships between surfaces i
and j:

• Surface i may see surface j completely. That is, no line segment that starts in i
and ends in j is obstructed by any interfering occluder.

• Surface i may see surface j not at all. No unobstructed line segment from i to j
exists.

• Surface i may see surface j partially : Line segments from a point on i to a point
on j exist that are obstructed, and such that are unobstructed.

Obviously, the array is diagonally symmetric, as PVSsurfaces(i, j) = PVSsurfaces(j, i)
for all 0 ≤ i < n, 0 ≤ j < n.

In a first step, for each leaf L, we mark all surfaces of all leaves that are in the PVS of L
as (partially) visible from all faces of L. As this step alone yields only a gross estimation
of the information that we actually want (at the level of surface-to-surface rather than
leaf-to-leaf visibility, plus the “complete visibility” flag whenever possible), the next steps
refine the current matrix. The first idea is to exploit the fact that each surface is planar,
and thus can only see others if they are above or intersect the plane of the surface. In
other words, we may reset the mutual visibility of two surfaces to “none” if the first is
below the plane of the second or vice versa. Nonstandard surfaces like sky surfaces are
special cases, and we may reset their mutual visibility to all other surfaces to “none”,
too. Finally, we determine which of the remaining “partial” visibility relationships are
actually “complete visibility” relationships. This is achieved by constructing the spatial
convex hull over each pair of partially visible surfaces, and then testing if any other

16



3.3 CaLight: Computing the Light-Maps

Figure 1: A polygon that is covered with the regular grid of patches. Each patch corre-
sponds to a light-map element.

surface extends into this convex hull. This process is much accelerated by the proper
use of bounding boxes.

The such obtained information in PVSsurfaces proves very useful later during the core
steps of the algorithm.

3.3.2 Preparing the Patches

The patches cover all surfaces like a grid, and are the fundamental data structure on
which the radiosity algorithms operate. Therefore, we allocate a grid (array) of patches
for each surface. The patches are constructed in such a way that their position, di-
mensions, and number exactly match the parameters of the light-map that is associated
with that surface. That is, each light-map element matches exactly one patch. It is the
simultaneous allocation of all patches for all surfaces that makes CaLight expensive in
terms of memory space consumption.

After the patches have been allocated, their initial energies (radiant exitances) are set
to zero and their spatial center coordinates are computed. We also compute whether
the patch is located inside its surface (at least partially). Patches can be outside their
surfaces, because patches are arranged in regular grids (as are light-maps), covering
convex but irregular surfaces. See figure 1 for an example polygon that is covered
with patches. This information will become important later, as it helps us to treat
the borders of the polygons correctly. Handling the borders of polygons well in setups
like this (regular grids cover irregular polygons) is a tough problem in general, and
especially in almost every part of radiosity algorithms. The information computed here
helps significantly in this regard.

The final step in patch preparation involves casting sunlight onto the freshly initialized
but otherwise still dark patches. This is easily achieved by tracing rays through the
Ca3DE world2: starting from each patch’s center coordinate in the opposite direction of

2Due to the hierarchical representation (as a BSP tree) of a Ca3DE world, tracing rays through it can
be achieved very efficiently in logarithmic time. This property is also helpful for the main algorithm
later, which shoots millions of rays.
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3 Radiosity based Light-Maps

the sunlight, we only have to determine whether the ray hits a “sky” surface. On hitting,
we simply assign appropriate values to the total energy and the not-yet-radiated energy
of the patch. As it has turned out that that approach tends to produce light-maps whose
sunlight to shadow transitions suffer from the well-known aliasing or “staircase” effect
(as is the nature of low-res light-maps), we employ both multi-sampling of the above
described sunlight derivation, plus carefully apply a smoothing filter immediately after
all patches got their sunlight energies assigned. The combination of both measures leads
to visually pleasing transitions.

3.3.3 Direct Lighting

The direct lighting phase is nothing but a special case of the subsequent bounce lighting
phase, and in fact makes use of the same subroutines. Its purpose is to assign initial
energies (radiant exitances) to the patches of surfaces that have been defined as light
emitters. Then, one shooting step of these energies into the environment is performed.
After this step our patches contain only emissive plus direct lighting – thus the name for
this phase.

Another substep that is performed here is the assignment of energy that is emitted by
point light sources. Point light sources do not exist in physical reality, but are easy to
model mathematically and algorithmically. For each patch that is in the PVS of a point
light source, we compute the energy that it receives based on the point light sources
irradiance and geometric attributes. This step too is in the sense of “direct lighting”.

3.3.4 Bounce Lighting

The bounce lighting phase is the core of the radiosity algorithm, and as such the most
interesting part. It consists of an infinite loop that has two essential steps: The de-
termination of the patch that should next shoot its as yet unradiated energy into the
environment (or the termination of the loop if no such patch exists), and the actual
shooting (radiation) operation of that patch.

The next patch for shooting its energy could in theory simply be selected by choosing
the successor of the current patch in the global array of all world patches (i.e. picking the
patches in linear sequence). This strategy, however, will cause us to converge towards
the final solution as slowly as the Gathering methods that employ Gauss-Seidel iteration
do. See [CW93] for a treatment of these techniques. As Cohen and Wallace further point
out, we can converge much more quickly (i.e. in much fewer iterations) by the method
of Progressive Refinement, which is a modification of the Southwell iteration method.
The physical interpretation of this method is that a patch “shoots” its energy into the
environment, and by selecting the patch with the largest as yet unshot energy, we can
achieve quick progress. As choosing that very patch in each iteration can be expensive
in its own right, I’ve chosen for CaLight to simply pick the largest patch from a set of
10 random samples of each surface. This selects a patch in a cheap and near optimal
manner. Only when the unradiated energy of the chosen patch is below a user-defined
threshold, CaLight employs a full search for remaining patches that have a higher value.
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If still no adequate patch is found, we can assume that we have reached the desired
solution (ignoring the remaining small amounts of unradiated energies that are all below
the user-defined threshold), and terminate the loop which finishes the bounce lighting
phase.

Shooting Unradiated Energy

If however a patch has been found with a high unradiated energy, we next radiate (or
shoot) its energy into the environment.

Before doing so however, we employ a simple optimization that’s derived from the
chapter about Hierarchical Methods in [CW93]: The number of form factors that have
to be computed between individual patches can be reduced when the interaction between
two groups of patches that are widely separated is approximated with a single interaction.
That means that we start by summing up the unradiated energies of all patches in a
square of n×n patches near the original patch. Simultaneously, we average the positions
of the patch centers in order to obtain a position for all patches in the square. In order
not to further complicate the algorithm, we normally fix n at 3. This value can be
changed by the user, but a better solution of course would be to choose n dynamically,
e.g. based on the distance to the other surfaces (the shooting targets). This is fairly
simple if all target surfaces are of roughly the same distance to the shooting patch(es),
but is more difficult if some shooting targets are very close and others are far away. In
this case, we had to build multiple groups of patches for multiple choices of n, and use
the smaller groups for shooting at closer surfaces, and the bigger groups for shooting
at surfaces that are farther away. The algorithms for this concept are quite delicate (I
expect both a performance and quality gain though), and will be added to CaLight in a
future release.

Now that we know what to shoot and from where, we continue by looping over all
patches of all faces that are visible from the shooting face. If we have previously com-
puted that the surface of the shooting patch is fully visible to the face of the current
receiving patch, we may save all geometric occlusion tests (ray clipping) between these
two points. If the mutual visibility is partial, each ray test between the center of the
shooting patch group and the current receiving patch is evaluated.

Next, we compute the form factor of the current arrangement of patches. In the
actual code, this is somewhat optimized by e.g. not computing the square roots of
certain values, but rather by continuing the computations with the squares which cancel
each other out as the computations evolve. However, these purely technical issues are
not to be further deepened here.

Finally, we account for absorption by reducing the incoming energy by the diffuse
reflectivity of the surface, and add the remaining energy to the receivers total and un-
radiated energy value.

This closes the cycle: Energy has been radiated from the shooting patch(es) to the
receiving patches in the environment. Some of the received energy has been absorbed as
heat, which falls out of our system. The remainder is stored as yet unradiated energy at
the receiving patches. It waits for re-reflection into the environment until the formerly
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receiving patches are selected for shooting in a later iteration of the algorithm. The fact
that some of the energy has been absorbed to heat also indicates that we actually made
progress in converging towards a solution (“light equilibrium”). While we will not ever
be able to reach the analytical correct solution with the presented iterative algorithm,
we can achieve a very good approximation.

3.3.5 Tone Reproduction

As the dynamic range of the computed radiosity solution by far exceeds what typical
output devices can display, we have to include a processing stage that reduces the dy-
namic range of the computed results. Reducing the dynamic range is a difficult problem,
and several methods have been explored in the past.

CaLight employs the histogram based approach described in [LRP97], which I have
found to produce very good results. Larson described his method originally for screen-
space images, but its extension to world-space light-maps can easily be derived from his
work.

3.3.6 Post-Processing the Borders

The borders of the polygons imply special problems on our algorithm. This is especially
true since at runtime, the renderer of the 3D engine will typically employ bilinear3

filtering when sampling the light-maps.
This implies that we do not only have to restrict our texture filtering technique to

bilinear filtering and to keep safety distances between all light-maps such that storing
many light-maps in a common texture image file works as described in the footnote,
but also that we have to account for the fact that during bilinear rendering, light-map
elements contribute colors that never received light in the first place. As shown in figure
2, this occurs at polygon edges because bilinear filtering refers to light-maps elements
whose patches have never been inside the polygon, and thus never received light.

It is almost impossible to solve these kinds of problems in a mathematically fully
satisfactory manner, but I provide algorithms for a two-step approach in CaLight that
produce near-perfect solutions in almost all cases: The first step considers all patches
of each surface that did not have their sample points inside the surface polygon. For
those, the average of their eight surrounding patches is computed. Only those patches
contribute whose sample point was inside the polygon though (and thus have valid values
from the main algorithm). This is a quick and simple start, as the method only considers
one surface at a time and thus the neighbouring faces do not contribute to the result. The
second step considers pairs of surfaces which share a common plane and are spatially

3Note that anything “better” than bilinear filtering does not work with light-maps: Light-maps do
normally have very small dimensions, and therefore we conveniently store many of them in a single
texture image file. As bilinear filtering takes the surrounding 2x2 texels into account, we are forced
to keep a certain “safety distance” of at least 1 texel between two neighbouring light-maps. However,
employing any other filtering technique that employs even bigger filter kernels (like Mip-Mapping,
anisotropic filtering etc.) would “melt” individual light-maps together that are independent from
each other but happen to be neighbouring in the bigger texture image file.
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Figure 2: The effect of original (left) versus post-processed light-map borders (right).

located close to each other (i.e. neighbours or near-neighbours). The goal here is to
account for high frequency shadows that cast across such neighbouring surfaces. The
combination of square overlapping light-maps for irregular polygons, bilinear filtering,
and arbitrary edges leads to artifacts that are best demonstrated in the left images of
figure 2. Getting this in order is achieved by a careful examination of the patches of two
surfaces that are spatially close. Such patches tend to overlap each other, and adapting
their values to each other resolves the problem. The adaptation of the appropriate
values is made particularly difficult by the facts that the patches have no common world
alignment (their overlaps are partial, not tiling), and by the danger of inadvertently
introducing a new erroneous effect known as “light bleeding”. Light bleeding occurs
when two independent rooms are separated through a thin but opaque wall, but light
from one can be seen in the other because their patches protrude into the other. The
algorithms must carefully make sure not to make mistakes even in such cases. The
determination of right and wrong correction attempts makes this part especially delicate.
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3 Radiosity based Light-Maps

Figure 3(a): A scene with only light-map rendering enabled.

3.4 Rendering Light-Maps

The rendering of the previously computed light-maps is well-known from literature, code
samples and tutorials that are available at many websites. It principally reduces to mod-
ulating the light-maps with the diffuse textures by simple multiplicative combination.

3.4.1 Results

Figures 3 and 4 show the lighting results obtained with light-map rendering. All pairs
of images show the same scene, once with the bare light-maps rendered only, and once
the “normal” case, where the light-maps and diffuse textures have been multiplicatively
combined.
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Figure 3(b): The same scene with light-maps and the diffuse textures combined.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The images on the left show scenes with only the light-maps rendered. The im-
ages on the right show the same scene, respectively, with light-maps and diffuse textures
combined.
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Many concepts and ideas in realistic image synthesis, including the proper lighting of
scenes, have long been known both in theory and software implementations. Examples
include ray tracers like POV-Ray, and renderers like Pixar’s RenderMan which has
gained a high profile as a tool in offline movie rendering. However, these implementations
have long been unable to produce real-time results.

Advances in hardware technology over the last decade resulted in graphics processing
units that are fast enough to allow for implementations of the theory at interactive
rates. Such hardware is conveniently available for the consumer mass market, yielding
the advances in computer graphics to a broad audience.

The specifics of the hardware technology have also led to new combinations of older
ideas and theories, and are setting trends for the close- and midterm future: The hard-
ware is triggering software research and development in order to better exploit it, while
the requirements from software development help form the next generations of hardware.
For example, while graphics processing units have become almost freely programmable
at the time of this writing, they still are much better in rasterizing geometry than in ray-
tracing it. The mutual dependency manifests itself in the research for and (re-)occurrence
of image synthesis techniques that are especially amenable to the new hardware tech-
nology, as for example the Phong lighting and shading model or the revival of stencil
shadow volumes.

Therefore, one keystone of this thesis was to explore the properties of real-time light-
ing in the context of contemporary hardware and software. This section describes the
theoretical backgrounds of hardware-accelerated lighting (that is, the Phong shading
model), and its extensions with several techniques (e.g. shadow volumes).

4.1 The Phong Shading and Illumination Model

For the purposes of hardware-accelerated lighting, it stands to reason to consider the
Phong shading and illumination model, with variants and extensions where appropriate.

Adopting the terminology of Foley et al. ([FvDFH90]), the term shading model refers
to the framework within which an illumination (or lighting) model is employed. The
Phong shading model comes close to what is known in the hardware world as per-
pixel (or per-fragment) lighting. That is, some illumination model is applied for each
individual rasterization fragment as a consequence from the fact that e.g. the polygon
normal vectors are interpolated across the polygon. This is contrary to Gouraud shading,
where only the final computed color values are interpolated across the polygon area. The
fact that we chose per-pixel lighting over per-vertex lighting is thus (almost) equivalent
to saying that we employ the Phong rather than the Gouraud shading model for all our
purposes. The Phong shading model requires more expensive implementations, but also
yields higher quality results, as is detailed in [FvDFH90].

The Phong illumination model describes the local illumination of a surface at a given
point. That is, contrary to global illumination computations as in CaLight (see section
3), which are much more complex, Phong lighting only considers local effects, and thus
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4 Dynamic Lighting on Dedicated 3D Hardware

can be handled well by the current hardware. Phong lighting is also easy to understand
and implement, and therefore the commonly favoured choice of illumination model for
implementation on programmable graphics hardware. More complex local illumination
models that provide more accurate results can still easily be added in future implemen-
tations.

Conceptually, the Phong illumination model was developed out of convenient practical
considerations in computer graphics, and it is important to note that everything that
is discussed in this regard has no clear physical interpretation. For example, material
reflection properties and light source colors are described as normalized RGB numbers,
that is, value triples in the range from 0.0 to 1.0.

The Phong lighting equation is described in great detail in many publications (e.g.
[FvDFH90] or [FK03]), even if with slightly varying terminology. Therefore, I will not
repeat its foundations and derivation here, but rather state the Ca3DE lighting equation
that I have chosen for further consideration, along with a detailed description of the
meaning of its symbols and sub-terms. After that, also the extensions to this technique
like stencil shadow volumes are treated.

The complete Ca3DE lighting equation is, at its highest level

outC = ambientContribC

+ emissiveContribC

+
n−1∑
i=0

diffuseContribi
C

+
n−1∑
i=0

specularContribi
C

(3)

The C subscript in this and the subsequent equations means “color”, and the i super-
script as in diffuseContribi

C refers to the i-th light source. In words, the lighting equation
computes the resulting color as the sum of the ambient and emissive components, plus
the diffuse and specular contributions of each light source. The next subsections provide
detailed descriptions of each sub-term.

4.1.1 The Diffuse Term

Assuming that there are n relevant light sources in the scene, the diffuse term is the sum
of the diffuse contributions of all n light sources:

diffuseContribC =
n−1∑
i=0

atten(di) · diffuseC · Li
C · ( ~N � ~Li

dir)

The meaning of the individual symbols is as follows:

diffuseC : This is the diffuse reflectivity (diffuse color) of the material expressed as RGB
color.
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4.1 The Phong Shading and Illumination Model

atten(di) : The light attenuation. di is the distance from the current surface point to
the i-th light source. atten(di) is frequently defined in literature as follows:

atten(di) =
1

c1 + c2di + c3(di)2

c1, c2 and c3 are arbitrary constants that are chosen to yield a “good looking”
result. In section 4.5, where the implementation aspects of this equation are dis-
cussed, we will see that a slightly different definition of atten(di) is beneficial both
for image quality and ease of implementation on all supported graphics APIs and
hardware.

Li
C : The light sources RGB color.

~N � ~Li
dir : This term computes the cosine of the angle between the (normalized) direc-
tion to the light source Li, which is denoted as ~Li

dir, and the (normalized) surface
normal ~N by computing the dot product of the two normalized vectors.

One might be tempted to move the diffuseC symbol in front of the sum, as it does not
depend on i, but see below for a discussion why this is not done.

4.1.2 The Specular Term

Similar to the diffuse term, the specular term is the sum over the contributions of the n
light sources:

specularContribC =
n−1∑
i=0

atten(di) · specularC · Li
C · ( ~N � ~H)s

atten(di) : This is the attenuation of the i-th light source as defined above.

specularC : The specular reflectivity of the material expressed as RGB color.

Li
C : The light sources RGB color. This color may or may not be different from the light

sources diffuse color described above. For a “real” light source, it would be the
same color as for the diffuse light, but it often yields visually interesting results to
assign a different color for the specular highlight here.

( ~N � ~H)s : The cosine of the angle between the surfaces normal vector ~N and vector
~H, raised to the s-th power. ~N is usually obtained from the normal-map of the
surface. ~H is the halfway vector between the vector ~Li

dir from the current surface
position ~P to the light source position ~Li

pos, and the vector ~Vdir from the current

position to the viewer position ~Vpos. Thus, if norm( ~X) = ~X
| ~X|

(i.e. norm computes

the unit vector of a non-null vector), ~H is defined as follows:

~H = norm(norm(~Li
dir) + norm(~Vdir))

= norm(norm(~Li
pos − ~P ) + norm(~Vpos − ~P ))

(4)
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4.1.3 The Emissive Term

The emissive term is simply defined as follows:

emissiveContribC = luminanceC

That is, the light emissive value is taken from the materials luminance RGB texture-map.

4.1.4 The Ambient Term

Normally, the ambient component of a materials color is formulated as the materials
ambient reflection (“color”) times the color of the incoming ambient light:

ambientContribC = ambientC · globalAmbientLightC

where ambientC is the ambient reflectance of the material.
The results of this term, however, are uninteresting and of little esthetic value. There-

fore, I decided to take the previously computed global lighting data as the ambient light
contribution (please refer to section 3 for a discussion of global lighting that is computed
with radiosity algorithms). While this is not strictly complying to the definition of ambi-
ent homogeneous light, it makes perfect sense from a practical point of view. Moreover,
I assume that the ambient reflectivity equals the diffuse reflectivity of the material. The
ambient term therefore becomes

ambientContribC = diffuseC · lightmapC ·Nz

diffuseC is the materials ambient reflection that is usually obtained from a texture-map
lookup. lightmapC is the materials light-map value that has been computed as in section
3 and is substituted for the global ambient light color.

What I have described so far yields exactly the same results as the lighting with
radiosity based light-maps alone as described in section 3.

The rationale for the presence of the Nz term, which describes the z-component of
the normal vector of the material, is as follows: During my tests and experimentation
with the lighting technique that is described in this section, I experienced frequently
that the subtle results of the diffuse and specular terms, described below, often went
unnoticed or became weakened by the presence of the visually more significant ambient
term. I therefore decided to “mix” the so far described ambient term with concepts
from the diffuse term: With the ambient light obtained from the light-maps, we have
no indication from which direction the light originally arrived. Therefore, let us simply
assume that it came from directly “above”.

In effect, multiplying the above ambient term with Nz “darkens” the overall result.
The net effect is that the diffuse and specular terms become better visible and the spatial
effect that they create when normal-maps are used becomes more pronounced.

Please note that computing the ambient term as described above, that is from precom-
puted light-maps, is in effect an early combination of two vastly different lighting tech-
niques, namely the precomputed, static, radiosity-based light-maps and the hardware-
accelerated dynamic lighting. As this approach makes a lot of sense in practise, I did
not attempt to artificially separate the two approaches in the implementation.
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(a) atten1(d) (b) atten2(d)

(c) atten3(d) (d) atten4(d)

Figure 5: Different attenuation functions in comparison. Brightness has been exaggerated
in order to display the effect more clearly.

4.1.5 The Attenuation Function

In theoretical treatments of the Phong illumination model, the attenuation function is
often defined as atten(d) = 1

a+bd+cd2 . d is the distance between the light source and
the current surface point, and a, b and c are arbitrary constants. As mentioned before,
contrary to radiosity computations for light-maps, there is no physical foundation for
such attenuation functions for dynamic lighting.

Therefore, my initial attempt was to implement a simple attenuation function of the
form atten1(d) = 1

bd , which seemed to look good. b was typically chosen around 0.0005,
and the function clamped to not exceed 1.0. The Cg expression that was employed
to compute the attenuation was saturate(2000.0/d-0.01). Unfortunately, with this
function the light attenuation gets 0 only when d approaches infinity. That means that
even very far away surfaces still receive some light from such a light source. This in turn
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(a) atten1(d) (b) atten2(d)

(c) atten3(d) (d) atten4(d)

Figure 6: Another set of images, showing the attenuation functions in comparison.

is a big lost opportunity for optimization: If the attenuation reached zero earlier, it was
possible to skip the lighting computations for surfaces that do not receive light anyway.
The -0.01 sub-term intends to account for that property, but to no great practical avail.

In a second attempt I therefore introduced a radius or “range” r for each light source.
The light sources intensity is defined to be maximum at its center, and to gradually
decay outwards such that 0 is reached at the radius. The new attenuation function
became atten2(d) = max(1 − d/r, 0), with r being the light source radius. This new
definition implies that no surface that is farther away from the light source than r can
receive light. Therefore it becomes possible to entirely skip the lighting computations
of all surfaces that do not touch the appropriate light sources bounding box. Moreover,
such faces also cannot be shadow casters, allowing us to skip all the expensive shadow
calculations for such faces. In my practical tests with the NV2X and NV3X Cg profiles
this configuration improved the performance considerably. Further implications of the
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(a) atten1(d) (b) (c) (d) atten2,3,4(d)

Figure 7: Graphs of the four attenuation functions.

new attenuation function are that the decay of the light intensity is no longer reciprocal
with respect to d, but linear. The downside is that the abrupt stop of the linear decay
at d = r is very noticeable in the final rendered images. This is because atten2(d) is G0,
but not G1 continuous.

I therefore adapted the attenuation function to atten3(d) = max((1.0−d/r)2, 0). This
still yields 0 (black) for d = r, and yields a softer transition (G1 continuity) at that point.
Unfortunately, the resulting images are by far too dark for most practical purposes.

My fourth and final modification of the attenuation function was therefore to define
it as atten4(d) = max(1.0 − (d/r)2, 0). This function has several advantages over the
previous attempts:

• Even though there is a “hard”, G1-discontinuous transition to black, it is not as
visually disturbing as with any of the previous attenuation functions.

• The resulting images get significantly brighter and more contrasted, emphasizing
the contribution of the dynamic lighting. This is a welcome side-effect, as the
contribution of dynamic lighting often is less noticeable when mixed with other
kinds of lighting.

• This attenuation function is the only one among those presented above that can
be computed on early generation programmable GPUs, without having to resort
to lookups into texture-maps that encode (parts of) the function.

Figure 7 shows all attenuation functions that have been discussed, plotted into graphs
together with their respective derivatives. Figures 5 and 6 show the rendering results of
the four analyzed attenuation functions in comparison. The four images of figure 5 have
been carefully post-processed in order to better demonstrate the effect in printing.
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4.2 Summarizing the Lighting Equation

Putting all individual terms together in one big equation, the result looks like this:

outC = diffuseC · lightmapC ·Nz

+ luminanceC

+
n−1∑
i=0

atten(di)
(
diffuseC · Li

C · ( ~N � ~Li
dir) + specularC · Li

C · ( ~N � ~H)s
)
(5)

One might be tempted to rearrange and refactor the above equation further, for ex-
ample by moving the diffuseC and specularC components in front of the sums. However,
equation 5 is in good shape already:

1. It works well with hardware implementation, and especially with the stencil shadow
volume technique, which inherently requires a multi-pass rendering approach (one
pass per light-source).

2. It works well even on GPUs with significant limits in their execution of fragment
programs.

3. A rearranged form of equation 5 tends to exceed the valid range for outC , [0, 1],
much sooner than equation 5 as is. Premature and implicit clamping to that range
tends to produce unexpected results.

While also equation 5 can easily exceed the range [0, 1] when there are too many or too
bright light-sources, this behaviour is inherent to the Phong illumination model. For
these reasons, we stay with equation 5 as basis for implementation.

4.3 Stenciled Shadow Volumes

Dynamic lighting with the Phong shading and illumination model can well be augmented
with complementary shadow techniques. As has already been mentioned in the section
about Previous Work, two main approaches are suitable for combining with dynamic
lighting and hardware support: projective shadow-maps, and stenciled shadow volumes.
Each technique has its own strengths and weaknesses. Here is a list of features that I
observed about projective shadow-maps:

+ They are geometry independent. Anything that can be rendered can also cast
shadows, including non-closed and non-2-manifold or otherwise “broken” polygonal
models and polygons with masked (alpha-channel tested) textures.

+ (Fake) soft shadows are well feasible.

− Aliasing and singularity artifacts occur.

− Arbitrary numerous light sources do either require the same number of offscreen
buffers, or delicate reuse of one such buffer.
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− Not trivially omnidirectional (see [Bra] for solutions).

Here is a list of features that I observed about stenciled shadow volumes:

+ Geometrically and mathematically well founded.

+ Inherently omnidirectional.

+ Stencil-buffer hardware support is available even on very early, non-programmable
graphics boards.

− Require geometry to be closed 2-manifolds.

− High fill-rate requirements, and high computational costs to determine the shadow
silhouette.

− It is hard to get soft shadows.

Neither technique seems to work naturally well when translucency should be taken into
account: An object can either be opaque (and cast shadows), or be transparent like it
did not exist at all (and cast no shadows).

It is hard if not impossible to tell which technique is “better”. For best results,
they should probably be used in parallel, depending on the requirements of the desired
application. For the purposes of this thesis, I’ve decided to employ the stenciled shadow
volume technique as described in [EK02] and [MHE+03].

4.3.1 Shadow Volume Determination in BSP and PVS Models

As detailed in section 6.1, the “world” models in the Ca3D-Engine are organized in
Binary Space Partitioning trees, and augmented with Potentially Visibility Set data.
Moreover, worlds tend to be spatially very large when compared to (the radii of) light
sources.

These facts and special-property data structures suggest employing a different ap-
proach for shadow silhouette determination than is taken for the usual closed, 2-manifold
models as described in [MHE+03]. Actually, the set of surfaces that is potentially visible
from a dynamic light source as obtained from precomputed PVS data is typically a loose,
highly incoherent, unrelated set. These surfaces often do not share common edges, and
are far from being closed 2-manifolds. This means that a new method for silhouette de-
termination is even required unless one is willing to ignore the BSP and PVS information
of the world models. This is normally a bad idea though, as both the scene complexity
as well as the spatial extents are typically enormous, and thus are best managed by BSP
and PVS structures. Therefore, three approaches for determining shadow silhouettes for
BSP- and PVS-augmented worlds are described:

The first, and by far simplest, approach is to simply consider all surfaces that are in
the PVS of the current light-source and are front-facing the light-source (i.e. the light-
source is, with respect to the surfaces planes normal-vector, in front of the plane) as
separate and independent shadow casters. The problem with this approach is that even
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(a) Each polygon that is front-facing and in the
PVS of the light-source is a separate shadow caster.

(b) Contrary to (a), neighborhood relationships be-
tween polygons are now exploited as is common
with “regular” models.

(c) This approach takes the back-facing polygons
as shadow casters. A possible BSP subdivision is
indicated by blue lines and labels, too.

(d) One of several pyramids (the one for the right-
most wall) for making sure that no back-facing
shadow caster are overlooked.

Figure 8: Approaches for determining shadow volumes for models with BSP-tree and
PVS. The images show a top-down view of a simple room with a light-source. The
normal vectors of the wall polygons indicate orientation of the wall polygons. The
shadow volumes (that extend to infinity) are indicated by several colors.

though it yields correct shadows, it is highly inefficient: Consider an empty rectangular
room with four walls, a floor and a ceiling surface, and a light-source therein. Each of
the six polygons would become a shadow caster, even though in fact no shadows at all
needed to be cast as the room has no door to the outside. Figure 8(a) shows the same
principle in a slightly more complicated example: Even though only a tiny fraction of
the room is in shadow, seven shadow volumes must be processed (or even thirteen when
also counting the floor and the ceiling at three convex polygons each).
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The self-suggesting next step is to augment the BSP data structures to contain neigh-
borhood relationships for the surfaces, similar as is required for “regular” models. This
allows us to significantly cut the number of polygons that bound the sides of shadow
volumes, as is shown in figure 8(b). However, neither the near nor the far “caps” of the
shadow volumes are reduced in their number or importance.

I therefore modified the overall approach to still consider the surfaces that are in the
PVS of the current light-source as shadow casters, but now only the subset that is back-
facing rather than front-facing the light-source. This strategy immediately solves the
problem with the empty room: As all six surfaces are front-facing the light source, none
is back-facing, and thus no shadow silhouettes are created at all. Figure 8(c) shows the
room as with the first two strategies. It becomes immediately clear that the shadow for
the upper pillar is the same as with the previous approaches, but this time with only a
minimum of shadow volume polygons!

While one can argue about the preference for taking the front- or back-facing polygons
as shadow casters for regular models, I strongly expect that “world” models behave
differently from regular models, namely as presented in the discussion above: They are
huge, both the light-sources and observers are “inside” them, they are preprocessed with
BSP and PVS information, and the PVS of any given location tends to contain much
more front-facing than back-facing surfaces.

This in turn makes the third approach as presented in figure 8(c) the clear favourite
for determining the shadow volume for such worlds.

Unfortunately, the final approach also has a weakness: In some cases, it may happen
that a back-facing surface that should cast a shadow is not listed in the PVS of the
light-source. This situation is illustrated with the additional pillar in the center of the
room in figure 8(c): An arbitrary but correct subdivision has been chosen in order to
precompute the BSP tree for the room. For the PVS data, it turned out during PVS
computations that leaf D can see into all other leaves except for leaf E. As all surfaces
get assigned to those leaves that they intersect, we say that a surface is visible from a
BSP leaf L1 if it is in a leaf L2 that is visible from (that is, in the PVS of) L1. Therefore,
leaf E (including the indicated surface!) ends not being in the PVS of leaf D, whereas
all other surfaces in figure 8(c) touch or intersect at least one additional leaf that is in
the PVS of D.

Thus, algorithmic details may lead correctly to the inclusion of the other back-facing
surfaces that are shown as shadow-casters in figure 8(c), but may well omit the fourth
indicated surface. This behaviour results in missing shadows.

Solutions to this problem are not trivial. The best strategy that I have found is to
create a second data structure that complements the PVS, namely a “Potential Shadow-
Casters Set”.

1. This set is initialized by copying the back-facing polygons of the PVS into it.

2. Then, create pyramids whose apex is the point of the light source, and whose base
is a polygon of the front-facing polygons in the PVS, respectively. In the exemplary
room in the figures, the pyramid base would be the same polygons that form the
near cap of the shadow volumes in figure 8(a).
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3. Loop through all back-facing polygons in the world (not only those in the PVS),
and add those that intersect any pyramid to the set of potential shadow-casters (if
not already added in the first step).

Figure 8(d) shows how this algorithm adds the missing back-facing polygon to the set
of shadow-casters. This solves the problem.

Finally, the “Potential Shadow-Casters Set” should probably not be computed at
rendering time, but rather precomputed to form a lookup table to be used during ren-
dering. Note that precomputing this set is slightly more complicated than the algorithm
description above suggests: As a consequence of the fact that the PVS data is stored
not per-point, but rather per BSP-tree leaf (cell), and the position of the light-source
cannot precisely be known ahead, the computations must assume that the light-source
is anywhere in a leaf. This turns the pyramids into more complex convex polyhedra,
the algorithmic principle however remains the same. If known ahead, the algorithm may
even take the light source radii into account in order to minimize the set.

4.4 Rendering Paths for Complex Scenes

Rendering complex scenes with dynamic, per-pixel lighting, accurate shadows, reflective
and translucent surfaces, and many other subtle effects correctly can be a very difficult
problem in rasterizing (compared to ray-casting) rendering systems.

Before this thesis was begun and dynamic lighting and shadows added to the Ca3D-
Engine, the old rendering path basically comprised a single rendering pass for each
polygon, as only ambient light (“diffuse-map times light-map” as defined above) existed.
The old rendering sequence therefore was like this:

1. Render all entity models. These are all the detail models that are nonstructural.
Only models in the Potential Visibility Set of the viewer were rendered, and all
models were fully opaque. Due to z-buffering and testing, no explicit depth sorting
of the models was required.

2. Render the opaque surfaces of the world. These are the structural surfaces of the
walls, floors and ceilings. They are stored in the BSP that has been created by
the compile tools. These surfaces are rendered front-to-back. This maximizes the
utilization of the z-testing and thus improves performance. The proper sorting of
the surfaces can easily and essentially for free be obtained by the proper traversal
of the BSP tree.

3. Render the translucent surfaces of the world back-to-front. Once more, the sorting
is easily obtained by the proper traversal of the binary tree. This time the back-
to-front order is mandatory in order to get both the alpha-blended translucency
and the depth-buffer right.

4. Render the head-up-displays, particles, and anything else.

In this sequence, the first two steps should have been in reverse order, but as steps 2 and
3 have been in one common function, this order was adopted. This sequence renders the
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scenes entirely correct except for the particles, which had to be sorted into the BSP tree
in order to get them right in all cases, too. Another solution for getting the z-order of
particles right is presented in my Fortgeschrittenenpraktikum [Fuc03].

Let us now consider the addition of dynamic lighting and stencil shadow volumes: For
the high-level rendering code, the most important aspect is that stencil shadow volumes
are inherently multi-pass. As shadow volumes are global to a scene, the entire scene is
taken into account for determining the shadows for each light source, rather than only
individual polygons. Moreover, there is only one stencil-buffer available in practically
all rendering systems and APIs. Only if there were as many independent stencil buffers
as there are light sources in the scene would it be possible to combine multiple passes
into fewer. In other words, employing the shadow volumes technique with stencil buffers
means that the number of rendering passes is proportional to the number of light sources,
and it is impossible to collapse the contribution of several light sources into a single pass.

The new high-level Ca3DE rendering path is therefore as follows:

1. Of all opaque surfaces, render the ambient and emissive contribution, and basically
everything else that is independent of any dynamic light source (e.g. environment-
mapped reflections do usually work without light-source, too).

2. Render the light-source independent terms also for entity models. These first two
steps are identical with the old rendering path above.

3. Render the per-light-source contribution. That is, loop over all light-sources, and
for each one:

a) Render the stencil shadow volumes for the world surfaces (as determined in
section 4.3.1).

b) Render the stencil shadow volumes for entity detail models (e.g. as described
in [MHE+03] or [EK03]).

c) Render the per-light-source contribution (bump-maps, specular-maps, . . . ) of
world surfaces.

d) Render the per-light-source contribution of the entity detail models.

The problem with this rendering path is that it does not handle translucent polygons.
The problems that are associated with combining translucency with the above outlined
rendering path are complex: Translucent surfaces require a strict back-to-front rendering,
whereas the multiple passes that are required for stencil shadow volumes imply a different
order and inherently modify the z-Buffer in a way that collides with the demands of
back-to-front rendering.

Eventually, I have only found a compromise to overcome this problem: It seems that
stencil shadow volumes and rendering translucency cannot be combined in a wholly
satisfactory manner. Instead, I have decided to initially omit translucency issues from
the above rendering path. This implies that the light of dynamic light sources is cast
through (the omitted or nonexisting) translucent polygons. Although one would normally
expect that a translucent surface (e.g. color tinted glass) modulates or somehow modifies
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light that shines through it, omitting this is a more pleasing effect than blocking the light
like from a opaque polygon. Rather, I entirely repeat the above rendering path a second
time (with slight modifications), this time taking only the translucent polygons into
account. This does still not yield fully correct results when multiple translucent surfaces
are layered behind each other, e.g. because only the nearest translucent polygon can
receive per-light-source contributions. This is hardly ever noticeable in practise, and
is by far the best feasible solution to the problem that I have found. However, due
to z-Buffer issues it seems that there is no way at all to get even those final problems
resolved.

4.5 Rendering Dynamic Lighting

Rendering the above presented variant of the Phong shading model for hardware-
accelerated lighting is straightforward for most programmable GPUs and their APIs
(i.e. OpenGL extensions). Implementations have been provided for the NVidia NV2X
profiles of the Cg shading language, the NV3X profiles of Cg, and ATI Radeon 8500 and
higher GPUs via the GL_EXT_vertex_shader and GL_ATI_fragment_shader OpenGL
extensions.

The biggest problems and most important considerations for rendering are perfor-
mance and software design aspects. In fact it has turned out that the software design
has become such a fundamental issue that I wrote an entirely new Material System in
order to handle the complexity and achieve the desired flexibility that is inherent to and
comes with dynamic lighting in practical applications. Section 6.5 contains additional
information about the Material System.

A strategically important consideration for performance is the fact that not all mate-
rials come with diffuse-, normal-, specular-, luminance- and light-maps. Normally, one
or more of these contributor maps are missing, and as such, the relevant term of the
Phong lighting equation disappears. For performance, the question is whether or not
missing maps should be replaced by default maps that produce the same result as if
the appropriate term was properly cancelled from the entire equation, or if specific Cg
shaders should be written to handle each specific case. I have created comparative tests
in order to answer this question, the results of which are given below.

4.5.1 Results

Figure 9 presents several screenshots of dynamic lighting, augmented with light-map
lighting as described in section 3, as implemented in the Ca3D-Engine. Normal-map and
specular contributions are well visible, as are the shadows by stencil shadow volumes.

The performance that was achieved when these images were taken depended much
on the underlying hardware, the details of the implementation, and possible quality
versus speed trade-offs. Together with the exploiting of Potentially Visibility Sets, and
the influence of stencil-shadows, the frame-rate also varied widely with the amount and
arrangement of the contents of the individual scenes. Nonetheless, I was able to obtain
interactive (20+ FPS) or at least near-interactive (10+ FPS) frame-rates in almost all
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Rendering results of dynamic lighting with stencil shadows.

39



4 Dynamic Lighting on Dedicated 3D Hardware

PVS enabled PVS disabled
World NV2X NV3X NV2X NV3X
BpWxBeta 28 7,4 14 4,2
ReNoEcho 29 7,7 21 5,9
ReNoElixir 19 5,1 12 3,8

Table 1: Performance in various settings where black 1x1 maps were substituted for
missing specular-maps.

PVS enabled PVS disabled
World NV2X NV3X NV2X NV3X
BpWxBeta 36 9,0 18 4,9
ReNoEcho 37 9,1 27 7,0
ReNoElixir 27 6,5 16 4,6

Table 2: Performance in various settings where special-case fragment shaders were em-
ployed in order to account for missing specular-maps.

cases and test scenes with all GPU-specific renderers that I wrote support for (NVidias
NV2X and NV3X GPUs, and ATIs R2XX GPUs).

The above mentioned question whether missing contributor maps should be replaced
with default maps or rather if special-case fragment programs should be employed was
started with a measurement of frame-rates at the starting points of three selected sample
worlds. Table 1 shows the results that were achieved when missing specular-maps were
replaced with a black 1x1 map, and missing luminance-maps were replaced with a black
map, too. The table shows values both for NV2X and NV3X profiles (separate GPU
programs specific to each profile), and with the Potentially Visibility Set both activated
and deactivated for better expressiveness.

For table 2, missing specular-maps were not any longer substituted by black 1x1 maps,
but special-case fragment shaders were employed. This helps performance especially in
the NV2X profiles, as their limited capabilities require a separate rendering pass for the
specular contribution anyway, which can simply be completely omitted when there is no
specular-map present. The performance with the more powerful NV3X profiles can also
be observed, although less significantly.

It should be noted in this regard that while multipurpose fragment shaders execute
more slowly than their special-case pendants when missing maps have been substituted
with default maps, there is also a cost for switching such shaders. It has turned out that
binding new shaders can occur very often when the special-case method is employed,
and that such bindings are in fact very expensive (that is, time consuming). The balance
between both above compared methods is thus more delicate than the numbers in tables
1 and 2 might initially suggest. If all polygon meshes that occur in a scene could
be pre-sorted such that they can be rendered by shader order, re-bindings of shaders
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would be minimized, and the special-case shader method would certainly achieve highest
performance. If however the contrary is the case, that is, every mesh requires a shader
re-binding, the binding costs might exceed the overhead of a single multipurpose shader
than runs with some default-maps on every second mesh. Similar considerations apply
to re-bindings of texture-map objects.

In summary, the performance of dynamic lighting on dedicated 3D hardware is highly
dependent on external factors. For future research, I’d suggest a test scenario that dis-
tinguishes three cases: Meshes pre-sorted by special-case shaders (this probably yields
the highest performance), a mesh order that requires shader re-bindings on every ren-
dered mesh, and the same mesh order but with a single multipurpose shader (does not
require any re-bindings).
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One of the key goals of this thesis has been to implement and analyze Spherical Harmonic
Lighting, and to compare it with the other lighting methods. Thereby, SHL was to
be applied not to a dedicated, highly tessellated model, but rather to a reasonably
low-polygonal world as it is still common in Ca3DE and many other contemporary
applications. This in turn required me to leave the previously described paths and
approaches of earlier SHL papers by other researchers, and instead to meet the new
requirements as detailed in this section.

5.1 Review of Spherical Harmonics

Spherical Harmonic Lighting (SHL) was first introduced by Jan Kautz, Peter-Pike Sloan,
and John Snyder in [SKS02]. Robin Green wrote a subsequent report ([Gre03]) that also
provides a view on the mathematical foundations.

The key idea behind SHL is straightforward and simple: We combine descriptions of
(dynamic) light sources with descriptions of (static, precomputed) surface properties at
the desired points on the surfaces, such that the final illumination at the selected points
can be obtained.

Figure 10: Two plots of a
luminance function of two
light sources.

In order to achieve this, let us first consider the light
sources. All light sources are considered to be at an in-
finitely large distance, which is an inherent property (and
in a sense a restriction) of this lighting technique. Typical
examples for such light sources are the celestial bodies like
suns and moons, and basically all other light emitters that
are located near the sky dome and therefore qualify them-
selves for being at infinity for all practical purposes. An
imaginary observer at a given viewpoint can then obtain a
“description” of all light sources by determining for each
view direction the incident illumination from the sky dome. The resulting “description”
is in the form of a spherical function. Figure 10 shows an example for light sources
that are represented by a spherical function. Note that there is only a single spherical
function that is plotted twice: Once as the sky domes spherical arc whose function value
is encoded in the hue (color) of the plot, and once as a plot where the spherical function
values are expressed as the radii of the plot. Such spherical functions that describe the
illumination of the sky dome are called luminance functions.

Now let us consider the scene. For each surface point in a scene, we store a description
(once more in form of a spherical function) of the “potential incident illumination”. That
is, the spherical function of a surfaces point P is to answer the question “Given incident
illumination from a direction ω, how much of it does P (diffusely) reflect?”. It is clear
that the answer to this question (and thus the spherical function) can be very complex.
Even when we restrict ourselves to purely diffuse reflection (versus taking e.g. BRDFs
info account), incident light from ω may or may not be occluded by other geometry, and
it may or may not have been reflected from other geometry to reach P . Such spherical
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functions are called transfer functions. Creating transfer functions properly is one of the
most important issues of this thesis, and will be discussed in greater detail below.

Figure 11: An exemplary
transfer function (plotted
light blue, as the sky dome)
of a point P of a scene.

In figure 11, an arbitrary point P of a scene has been
chosen and its transfer function has been visualized. Note
that the transfer function in the figure takes both the
boolean information “can / cannot be seen by the sky”
and the cosine of the incident angle into account, but not
(yet) any reflections from the surrounding environment.

Finally, when it comes to rendering the scene with a set
of light sources, we are given a luminance function (which
might have been created in real-time, ‘on-the-fly’), and a
(usually precomputed) transfer function for the currently
rendered fragment at surface point P . Both functions are then combined by modulating
(i.e. “multiplying”) them, and the result is integrated over P ’s entire hemisphere in
order to obtain the illumination at P .

The special property that makes this approach outstanding and principally (or at least
reasonably, in real-time) possible, is the way in which the spherical functions are stored
and dealt with: There is no explicit storage (e.g. a tabulation of the values by azimuth
and elevation), but rather a decomposition into a set of Spherical Harmonics, for which
only a very limited set of coefficients has to be stored. Given sets of Spherical Harmonic
coefficients, the truly significant and astonishing result is that even the above mentioned
multiplication and integration can be reduced to a mere dot-product like operation.

The next sections will discuss the related backgrounds in greater depth.

5.1.1 Orthogonal Basis Functions

Basis functions Bi(x) are small pieces of signal that can be scaled and combined to
produce an approximation of an original function f(x). The “scale factors” for each
basis function Bi are scalar coefficient values ci that describe how much the original
function f(x) is like the basis function Bi(x). The process of determining the proper
coefficient ci for each basis function Bi(x) is called projection. Projection is achieved by
integrating the product f(x)Bi(x) over the full domain of f for each basis function Bi,
yielding a vector of the desired scalar values:

ci =
∫

f(x)Bi(x) dx

Figure 12 shows an example of this process for the first three coefficients. Having
obtained a vector of coefficients (c1, c2, c3, . . . ) this way, the process may be reversed by
scaling the basis functions Bi with their related coefficients ci, and summing the results.
This yields an approximation of the original function, as is shown in figure 13.

While the basis functions in the above example have been linear, the most interesting
basis functions are grouped into families of functions that are called orthogonal poly-
nomials. The integral of the product of two orthogonal polynomials either yields 0 if
they are different from each other, or a constant value if they are the same. A more
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Figure 12: An example for computing the first three projection coefficients. Base image
with permission and by courtesy of Robin Green.

Figure 13: Reversing projection in order to obtain an approximation of the original
function. Base image with permission and by courtesy of Robin Green.
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Figure 14: The first six Associated Legendre Polynomials. Image with permission and
by courtesy of Robin Green.

rigorous definition requires that the product yields either 0 or 1, respectively, and the
corresponding subfamily of functions is called the orthonormal basis functions.

Among those, we are interested in the Associated Legendre Polynomials, which are
conveniently defined recursively:

(l −m)Pm
l = x(2l − 1)Pm

l−1 − (l + m− 1)Pm
l−2

Pm
m = (−1)m(2m− 1)!!(1− x2)m/2

Pm
m+1 = x(2m + 1)Pm

m

This definition is also well amenable to implementation issues. Plots of the first six
Associated Legendre Polynomials are shown in figure 14.

5.1.2 Basis Functions for the Spherical Case

While the previous section was about decomposing one-dimensional functions, we now
want to extend the concept to spherical functions.

Basis functions for spherical functions can be obtained from the previously mentioned
Associated Legendre Polynomials. Such functions are called Spherical Harmonics. While
these are generally defined on complex numbers, we are only interested in real-numbered
functions over the sphere (e.g. light or transfer functions), and therefore we only consider
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the definition of Real Spherical Harmonics, which are usually denoted with the symbol
y:

ym
l (θ, φ) =



√
2Km

l cos(mφ)Pm
l (cos(θ)) if m > 0

√
2Km

l sin(−mφ)P−m
l (cos(θ)) if m < 0

K0
l P 0

l (cos(θ)) if m = 0

Here, P denotes the same Associated Legendre Polynomials as above, and K is a scaling
factor defined as

Km
l =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Given that, the projection of Spherical Harmonics works analogous to the projection
for the 1D case:

cm
l =

∫
S

f(s)ym
l (s) ds (6)

5.1.3 From Samples to SH Coefficients

With the generic derivations presented in the previous sections, what remains is to find
a numerical method for obtaining representative SH coefficients for a given spherical
function f(θ, φ) that is defined in polar coordinates.

Rewriting equation 6 in terms of f yields

cm
l =

2π∫
0

π∫
0

(f(θ, φ)ym
l (θ, φ)) sin θ dθ dφ (7)

However, this does not help much with numerical computation.
Now let us assume that f is represented as a set of N discrete samples xi (1 ≤ i ≤ N),

where f(xi) is the value of the i-th (θ, φ) pair (or look-up key). As [Gre03] has well
demonstrated, we may apply the generic Monte Carlo estimator

∫
g(x) ≈ 1/N

N∑
i=1

g(xi)w(xi) (8)

to equation 6, with w being the weighting function. As w(xi) = 4π for all xi, we obtain

cm
l ≈ 1/N

N∑
i=1

f(xi) ym
l (xi) 4π

=
4π

N

N∑
i=1

f(xi) ym
l (xi)
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5.2 Computing Transfer Functions

Now that we have seen how arbitrary spherical functions can be decomposed into SH
coefficients, let us consider how transfer functions are created and how their (final) SH
coefficients are obtained. We will find that for transfer functions that take no self transfer
(bounce or interreflected light) into account, a straightforward approach to computing
the SH coefficients is feasible. For the case of also dealing with self transfer, the property
of SH projection that is described by equation 11 will be exploited to significantly simplify
the computations.

5.2.1 Diffuse, Self-Shadowed Transfer Functions

In order to compute our first transfer functions, we reduce our considerations to flat
surfaces that only receive direct lighting and reflect that light in a purely diffuse manner.
That means that no matter from which direction a point on the surface is receiving light,
the light is reflected equally in all directions.

With these assumptions, the generic rendering equation 1 can be significantly simpli-
fied and becomes:

L(x′) =
∫
S

L(x, ~ω)
ρx

π
max(Nx � ~ω, 0) dA (9)

Our transfer function is described by the sub-term
ρP

π
max(NP � ~ω, 0) (10)

of this equation, writing P for the position now rather than x. It is determined as
follows:

Initially, we create a set of uniformely distributed sampling normal vectors. An ex-
ample for such a set of samples is shown in figure 15(a).

One can imagine that this set of samples is then “moved” to the surface point P at
which the transfer function is to be computed (see figure 15(b)). At P , the transfer
function 10 is evaluated by computing a value for each sampling normal vector. The ob-
tained numbers are another, intermediate representation of the transfer function. They
are shown as the length of the sample normal vectors in figures 15(c) and 15(d), where
the “missing” ones have value (or length) 0. Compared to 15(c), figure 15(d) extends
transfer function 10 by also taking the geometric visibility for self-shadowing into ac-
count.

The set of sample directions (figure 15(a)) is not tied to a specific surface point P ,
and it can be re-used for the next point of a surface.

Computing the SH coefficients for transfer functions is typically achieved by first
computing the transfer functions as sets of samples as just outlined, and then turning
the samples into SH coefficients as described in section 5.1.3. For the more complex case
of bounce transfer, we will see that working with the samples during the bounce transfer
computations is very expensive, as the intermediate computations contain a factor of
O(number of samples). Property 11 below will show how we can reduce this factor to
O(number of SH coeffs).
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(a) (b)

(c) (d)

Figure 15: Computing a diffuse, self-shadowed transfer function.

5.2.2 Diffuse Transfer Functions with Bounce Lighting

Contrary to other researchers like [SKS02] or [Gre03], I have decided to examine the
shooting solution to compute bounce transfer for the reasons that are detailed in section
5.3, where the analogy of SHL to light-maps and radiosity is discussed.

For any approach to bounce transfer, it is required to shoot or gather transfer functions
to or from points in the scene from or to other points in the scene. One of the key ideas of
this thesis has been to handle transfer functions analogously to the illumination-handling
radiosity approaches as described in [CW93], or the specific approach described in section
3. Section 5.3 details that that is actually possible.

However, there is an important insight that helps immensely to actually achieve this
goal: In theory, it is attempting to compute all samples for the transfer functions of
all points of the scene as described in the previous section. The second step would
then implement the bounce transfer part, working on transfer functions that are still
represented as collections of samples and passed around as such in the scene. Only at
the very end, after the bounce transfer step has converged to a solution, would this
method compute the SH coefficients from the final collections of samples.

This approach suffers from two major problems: Combining (i.e. adding) transfer
functions that are represented as sets of samples can be computationally both difficult
and expensive.
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• If each point in the scene got its set of directional vectors for spherical sampling
created individually, these sets would in general be disjoint. Then, the only way
to create a combined transfer function from two source functions would be to join
their sets of samples. However, doing so has the tendency to grow the number of
samples for the transfer function of a point in an exponential manner.

• In case the set of directional vectors has been chosen identically for each point
(which is both a feasible and reasonable assumption), combining two sets of sam-
ples reduces to adding their values. That is, if the (ordered) set of samples of the
transfer function for point P is SP = {s1, s2, s3, s4, . . .}, and the (equally ordered)
set of samples of the transfer function for another point Q is TQ = {t1, t2, t3, t4, . . .},
and if directionalVector(si)=directionalVector(ti) for all i, then the transfer func-
tions of P and Q can be combined by copying their directional vectors and setting
the appropriate sample values to si + ti. While this is much better than the first
case, this is still a forbiddingly expensive operation (often including many thou-
sands samples) that is at the innermost loop of a radiosity-like algorithm.

Fortunately, there is an interesting observation that helps with both problems: Let
cm
l (f) be the SH projection for the arguments l and m and for a given spheri-

cal function f as defined by equation 6. That is, analogous to equation 6, define
cm
l (f) =

∫
S

f(s)ym
l (s) ds. Then does the following property for cm

l (. . .) and two spherical

functions f and g hold:

cm
l (f + g) = cm

l (f) + cm
l (g) (11)

The proof is straightforward:

cm
l (f + g) ⇐⇒

∫
S
(f + g)(s) ym

l (s) ds

⇐⇒
∫
S
(f(s) + g(s)) ym

l (s) ds

⇐⇒
∫
S

f(s) ym
l (s) + g(s) ym

l (s) ds

⇐⇒
∫
S

f(s) ym
l (s) ds +

∫
S

g(s) ym
l (s) ds

⇐⇒ cm
l (f) + cm

l (g)

(12)

In other words, this means that is does not matter whether we add two spherical functions
before the projection or after the projection! This in turn implies that we are not forced
to actually work with the samples of the transfer functions during the bounce lighting
phase, but we can rather resort to a much more natural method: The first step for
bounce transfer is exactly what we did for computing the diffuse, self-shadowed transfer
functions (section 5.2.1). This includes the projection of the samples into SH coefficients.
Then we may add bounce transfer as a second, entirely optional step. This leads to a
very modular algorithm design.
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5.3 The Analogy to Light-Maps and Radiosity

Virtual worlds that are intended for interactive display are even today normally tes-
sellated in a low-polygonal manner. This is especially true for structural elements, i.e.
objects in the 3D world that are large with respect to the observer and light source
attributes. Therefore, the problems associated with lighting where intensities are inter-
polated across polygon vertices (Gouraud shading) are still common. [FvDFH90] has an
excellent description of Gouraud shading (pp. 736), as well as of the associated prob-
lems (pp. 739) like perspective distortion, orientation dependence, problems at shared
vertices, and others.

Before we proceed though, let us briefly recap how CaLight works. CaLight is my
progressive refinement radiosity implementation for computing high quality light-maps,
presented in detail in section 3.3. Understanding the principles of CaLight will be a
great help in making decisions about the implementation of SHL, discussed below.

• We start with the assumption that the entire world (scene) is uniformly covered
with square patches.

• Each patch holds and maintains a “Total Energy” and “Unradiated Energy”. Total
Energy is the total light energy that this patch reflects into the environment, that
is received minus absorbed light energy (plus emissive energy if the surface is a
light emitter). Unradiated Energy is the energy that has not yet been emitted (or
“shot”) into the environment.

• Then the following steps are repeated continuously in a loop:

1. Search the set of all patches for a patch A whose Unradiated Energy is rea-
sonably high.

2. Shoot As Unradiated Energy at all other patches in the environment, taking
mutual visibility, spatial arrangement, distance etc. into account.

3. Increase both the Total Energy and the Unradiated Energy of all hit patches
by the appropriate amount.

4. Reset the Unradiated Energy of A to 0.

This is repeated until no patch with a noteworthy Unradiated Energy can be found
in the first step of the loop.

Therefore, one of the early key decisions in my implementation had been to not imple-
ment SHL on per-vertex basis, but rather per-pixel on programmable graphics hardware.
This in turn, with the above summary of CaLight in mind, suggests to treat SHL analo-
gously to the light-maps that have been presented in section 3. Despite the fact that all
literature and researchers known to me (especially [SKS02] and [Gre03]) refer to vertex-
based SHL implementations, the following considerations led me to choose the per-pixel
approach right from the start:
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• Polygons can even today be very large, as they are used as world polygons for walls
and floors. In order to avoid the same problems that ordinary lighting (Gouraud
shading) has, implement SH lighting on the per-pixel level.

• If it works – good. If it turns out being too problematic (e.g. too slow, problems
in FS profiles, ...), we can still increase SHL-map texel-size or revert to the vertex-
shader-level.

• Have experience with traditional light-maps already, and “SHL-maps” at per-pixel
level have been expected to behave similarly. (For example, we can already deal
well with borders of polygons.)

• In current profiles, even in those for NV3X GPUs, textures cannot be accessed
from within vertex shaders. However, we need such textures to store our SHL
coefficients.

• Some matters in [Gre03] were unclear to me – a new thorough implementation
gives room to clarify also these issues. The details are given in the discussion
below.

Nonetheless, the SHL implementation provides convenient ways to fallback to per-vertex
or even software lighting if required.

The next section discusses CaSHL, which is for SHL what CaLight is for light-maps.
The section after that will then explain the rendering of the SHL-maps as generated
by CaSHL, and the subsequent sections discuss various extensions to the standard SHL
that have been explored in this thesis.

5.4 CaSHL: Computing the SHL-Maps

One of the key questions that were subject to investigation within this thesis was how
SH lighting can be well computed and employed in practical contexts. As has already
been indicated above, my first research suggested to store all SH data in “patches” that
in turn are organized in “SHL-maps”, the SHL equivalent to traditional “light-maps”.

Further experiments with implementations for precomputing SH bounce transfer then
quickly showed that such bounce transfer can actually be computed in a way that is
roughly analogous to the way bounce light (in the radiosity tool) works. That in turn
encouraged me in fact to lay out CaSHL analogously to CaLight, that is, to create
the bounce transfer computations in a similar fashion as the radiosity bounce light
computations.

Assuming that the reader is sufficiently familiar with shooting-based radiosity solu-
tions in general, and with CaLight as presented in section 3.3 and summarized in the
preceding section, I will now detail how CaSHL proceeds in order to precompute the
SHL-maps.
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5.4.1 Initialization

CaSHL initializes exactly like CaLight did: It extends the precomputed PVS information
from the leaves of the binary space partitioning tree to individual surfaces. The details
of this step are given in depth in section 3.3.1.

Once more, it is required that we can hold all patches in memory simultaneously, and
therefore the memory for all coefficients of all patches is allocated next. (As discussed
above, our patches do not now store light energy any more, but rather light transfer
functions, which are represented as SH coefficients. This is the first difference from
CaLight.) The transfer function at each patch is initially set to the “null” transfer
function.

The initialization is completed by another step that is entirely identical to CaLight:
The computation of geometric information about the patches’ spatial orientation and
location is important for the postprocessing at the polygon borders later. This step also
involves the introduction of the per-patch normal-vector as discussed in section 5.7.

5.4.2 Direct Transfer

The Direct Transfer step assigns initial transfer functions to each patch as described in
section 5.2.1, and is crucial for the rest of the algorithm: Starting from each patch’s
origin, the algorithm casts several thousand “shadow-feelers” into the environment in
order to determine for each sampled direction if a sky surface or an obstacle was hit.
This yields the initial transfer function (represented as a set of samples), which is then
converted into SH coefficients representation and finally stored with its associated patch.

It is possible to exit CaSHL at this stage and save the transfer functions that have
been computed as far as the final results. These transfer functions only account for
direct, self-shadowed, but not interreflected diffuse light.

5.4.3 Bounce Transfer

As was the case with CaLight, the “bounce stage” is the heart of the program. While
section “3 Diffuse Interreflected Transfer”, pp. 31 in [Gre03] describes the principles
of this stage, at the latest now it becomes obvious that mine and [Gre03]’s approaches
diverge: CaSHL employs an infinite loop that picks in each iteration the patch with the
largest or a reasonably large un-shot transfer function, and shoots its transfer into the
environment. The loop is exited when no patch with a sufficiently large transfer function
can be found. How “large” a transfer function is is determined by computing the sum
of the absolute values of its SH coefficients.

5.4.4 “Tone Mapping” Transfer Functions

Extending the analogy between CaLight and CaSHL led me to the conclusion that
transfer functions undergo the same mathematical operations in CaSHL that radiosity
quantities do in CaLight. That means that after the bounce transfer phase, the resulting
transfer functions are in a high dynamic range. This in turn eventually yields the same
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problems for rendering transfer functions as for regular radiosity computations, namely
the fact that the range of the transfer functions by far exceeds the dynamic range that
computer monitors can reproduce.

Therefore, I applied the same tone reproduction operator by [LRP97] that I use for
the radiosity quantities also to the transfer functions in CaSHL. In fact, doing so pro-
duced the expected results: While the contribution of the bounce lighting phase was
practically unnoticeable without the tone mapping step, including it yielded observable
interreflected lighting!

5.5 Rendering Lighting with SHL-Maps (Native Approach)

5.5.1 Inputs

Rendering SH lighting in the engine takes the precomputed SHL-maps as input. The
second required input is the SH light source. It is possible to base the SH light source on
realistic sky models as mentioned in [Gre03], and I added an appropriate implementation
for the CIE Clear Sky model to the Ca3D-Engine. However, for testing and research
purposes it is often better to employ purely artificial light sources, which are also easier
to compute, especially for the dynamic case when the light source parameters change
on each frame. All screenshots of SH lighting in this thesis were made with an artificial
light source.

The light source must be given as a spherical function, represented by SH coefficients.
These coefficients are normally obtained in the same way as for the patches’ transfer
functions in CaSHL: First the function is defined in the representation of a set of spherical
samples which are then transformed into SH coefficients in a subsequent step.

5.5.2 Storing the SH Coefficients

As the rendering is intended to employ contemporary 3D accelerator hardware, we are
required to encode the SH coefficients that are stored in the SHL-maps such that they
fit into regular texture-maps. In order to achieve this, consider a single instance: One
SHL-map stores n2 SH coefficients (for n SH bands) per element. Therefore, I put the
first four coefficients of the SHL-map into the RGBA elements of a texture-map of the
same dimensions. The second quadruple of coefficients goes into the RGBA elements of
another texture-map, the third quadruple into the RGBA elements of a third texture-
map, and so on. Thus, a total of n2/4 texture-maps for an n band SHL-map are required.

As the components of each RGBA texture-map element are normally limited to repre-
sent numbers from 0 to 1 in steps of 1/255, range compression of the SH coefficient values
is required for the storage. Figures 16 and 17 show scenes where the first texture-maps
of the SHL-maps have been rendered directly, showing the first three color-encoded SH
coefficients as RGB triples.
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Figure 16: The first three SH coefficients color-encoded into the RGB channels.

(a) (b)

Figure 17: Two more scenes that directly show the color-encoded SH coefficients.
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Figure 18: A first result of my SHL rendering implementation.

5.5.3 Results

Given both the light source and the per-patch transfer functions, the latter stored in
texture-maps as explained above, a per-pixel program that runs directly on the GPU
of modern 3D accelerator hardware is at the core of SHL rendering. As OpenGL 2.0
has not yet been available at the time of the implementation, I have chosen to employ
NVidias Cg using profiles for NV3X GPUs for the per-pixel programs.

Figures 18 and 19 present example rendering results that were obtained with this
method. Implementation details are given in section 6.4.1. (Figures 19(e) and 19(f) were
actually obtained by the means described in the next section, but they show visually
identical results.)

5.6 Compressing SHL Data

After the first practical tests with SH lighting where the coefficients are all stored in
SHL-maps rather than only per-vertex, it turned out that the storage requirements for
SHL-maps easily lead to very large world files on disk, and – more importantly – easily
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Additional results of my first SHL implementation. The celestial light source
(sun, moon) is animated.
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exceed the limits of available video memory when they are uploaded to the video board
for hardware-accelerated processing.

More precisely, a world that has a total of S sample points (that is, SHL-map elements)
at n SH bands, requires the storage of n2S SH coefficients. With n being typically at
least 4, S in other order of several hundred thousands or millions (say 500000 for a small
world), and the coefficients being stored as 4-byte floats on disk, this yields 42 · 500000 ·
4bytes

coeff. = 32 · 106 bytes or roughly 30 MB just for storing the SH coefficients. Before
uploading this data to the video card, I range compress each coefficient into a single
byte, which yields about 7.5 MB video memory consumption. While this example was
for a pretty small world, average worlds normally have roughly ten times as many sample
points, yielding 75 MB of required video memory. Increasing n from 4 to 6 increases
video memory consumption from 75 MB further to about 169 MB, and increasing n to
8 yields 300 MB of required video memory. This in turn is unfeasible for, or at least
inconvenient with, today’s consumer video boards.

Therefore, one of the key goals of this thesis became the compression of SHL coeffi-
cients. As suggested by Jan Kautz, a practical and straightforward method to achieve
this is vector quantization, which in our context works in the following steps:

1. Start with computing all SHL coefficients in CaSHL as before, including the
bounce-lighting and postprocessing steps.

2. For easier reference, consider the n2 SH coefficients at each SHL-map element
(sample point) as vectors for the rest of this section.

3. Instead of writing the (vector) results immediately to disk now, do rather determine
a set of representative vectors from the set of all vectors (which is of size S).

4. Assign each of the S original vectors another vector from the set of representative
vectors that is closest to that vector. (Pick the closest representative for each
original vector.)

5. For each original vector, just save the index to its closest representative (rather
than the vector itself).

6. Save the representatives.

As the number of representative vectors is normally only several thousand (and in prac-
tise even limited to 216 such that indices into the array can be stored in 16 bits), this
approach yields a significant compression ratio. Both the compression ratio as well as
the impact of this method on image quality are discussed below.

The above outlined method contains two interesting sub-problems, namely how the set
of representatives is best determined, and how decompression is best handled rendering
time.
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5.6.1 Computing the Set of Representatives

Given a set O of original vectors, we wish to compute a set R of “good” representative
vectors.

This problem is known as vector quantization, and in similar form known from the
problem of reducing a 24 BPP color image to an 8 BPP palette-indexed image. For image
color reduction, [Pip98] describes a simple octree based algorithm. [Dek94] describes a
neural-net based algorithm that yields very good results.

However, in CaSHL I implemented the Iterated Closest Points method in order to
determine the representative vectors. This method is simple, yields good results, and
has reasonable space and time requirements. The algorithm works as follows:

1. Initialize R by picking |R| arbitrary vectors from O. That is, let R be a subset of
O.

2. For each vector in O, compute the distances to all vectors in R, and store the one
that it is closest to (i.e., save the index into R). The result is for each vector in O
an index into R.

3. From that information, compute the reverse assignment: For each representative
in R, build the list of indices of original vectors that refer to this representative
as being the closest. The result is a cluster (list of indices into O) of the closest
original vectors.

4. Delete R and compute its elements completely anew from the center (average) of
this element’s cluster vectors.

5. Go to step 2.

While this algorithm is simple in principle, interesting questions arose in the imple-
mentation with respect to the number of iterations and the termination of the algorithm.
My initial approach to break out of the above mentioned loop was to assume that the al-
gorithm strictly converges. Thus, I assumed that in step 2, once a solution was reached,
no vector in O gets another index into R assigned than in the previous iteration. Un-
fortunately, this assumption was wrong – not only can it take several hundred iterations
until termination is detected (i.e. step 2 yields the same index list as in the previous
iteration), even worse is that the method can cycle! That is, with this criterion for
termination and in the presence of cycling, the algorithm is in an infinite loop.

The second approach therefore was to determine the largest distance of the minimum
distances after step 2. If this distance is smaller than the value computed in the previous
iteration, the algorithm made progress. Otherwise, the new assumption is that no further
progress is possible and that an optimal solution has been found. In order to account for
rounding errors or other ill-cased conditions however, I allow for up to three iterations
to fail in a row before the loop is finally left. That is, the algorithm terminates only if
after three subsequent iterations no maximum distance is found that is smaller than the
currently best (smallest) value.
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In my first practical tests with a small world, the second, revised termination method
reduced the number of iterations until a solution was detected from 150 to 6 in one case,
and similar orders of magnitude in other test cases.

Finally, I tried to shortcut the algorithm by skipping some of the original vectors
from O in step 2 in early iterations, in order to make the loop execute faster. Even
though it was cleverly implemented, this trick did not yield much temporal gain, and
even decreased the quality of the computed result (the largest distance measured after
step 2, taken as an error measure, grew with this shortcut).

5.6.2 Storing the Indices and Representatives

After the set of representative vectors has been computed, our SHL-maps do not store
any longer the n2 SH coefficients per element directly, but rather just a 16 bit index
into the representatives. As the indices must later be accessed from within a frag-
ment program that executes on the graphics processor, they must be encoded in regular
texture-maps. I therefore decided to put the lower 8 bits into the red texture channel,
and the upper 8 bytes into the green texture channel.

Rendering these color-encoded index-maps directly is not only very useful for debug-
ging, but also provides interesting insights into how the above discussed algorithm works,
and indicates the correctness of the implementation. Figure 20 shows images that have
been taken in the index-map debug rendering mode of the Ca3D-Engine. The shown
world is DmBase at 8 bands and 16384 representative vectors.

The representative vectors themselves, each consisting of n2 SH coefficients, must
also be encoded in regular texture-maps, such that the GPU fragment program can
access them in a second step. The lookup of the representative vectors depends on the
preceding lookup into the bare index-textures (shown in figures 20 and 22) that provide
the index/location into the representative texture-map for reading the SH coefficients.

For my original, uncompressed implementation of SH lighting, I decided to store the
n2 SH coefficients per SHL-map element by “layering” multiple texture-maps: The first
four coefficients were range-compressed into the RGBA-quadruple of the appropriate
element (pixel) of the first texture, the fifth to eighth coefficients were stored in the
RGBA-quadruple of the same pixel of the second texture, and so on. This approach
thus required dn2/4e “layered” texture-maps that together combine to one n-band SHL-
map. (And one world in turn often requires several dozen SHL-maps for full coverage.)

When it comes to storing the representatives for the compressed-SHL implementation,
it initially seemed promising to organize the representatives in a simple tabular layout,
where each row contains exactly one representative and there are as many columns
as there are SH coefficients (per representative). This avoids the requirement to store
arbitrarily many coefficients in multiple layered textures, but creates texture-maps whose
height matches the number of representatives (up to 216 = 65536) and whose width for
n bands is dn2/4e pixels. In practise, the texture-map width must even be increased to
the next integral power of two.

However, the splitting of the index numbers into the low and high byte requires re-
composing the original 16-bit number before the tabular texture-map can be accessed.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Index-maps that were rendered directly into the color-buffer for debugging
purposes. All images were taken in DmBase at 8 bands and 16384 representative vectors.
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Figure 21: An example for a color-encoded representative-map. The texture is 64 pixels
wide and 256 pixels high. It stores 4096 representatives in 16 columns of 4 pixels width
each. Thus each representative has 16 coefficients or 4 SH-bands.

Given today’s precision and width of GPU registers, and the fact that integer computa-
tions are simulated by floating-point operations, this computation is likely to be subject
to rounding errors. Rounding errors however are, for our purposes, fatal, as neighbour-
ing representatives in the lookup-table are generally incoherent! That is, accessing the
(i+1)-th or (i−1)-th representative rather than the i-th yields not just mildly inaccurate
results, but rather something that is entirely wrong.

This problem can be avoided by storing the representatives in a 2-dimensional layout
in order to account for the low and high byte of the index number: The table of repre-
sentatives is cut every 256 entries. This is the range that the low byte can address. The
sub-tables of 256 entries each are then stored in columns next to each other, yielding
d|R|/256e columns (|R| being the number of representatives), where each column in turn
consists of dn2/4e pixels as in the original table. As this avoids additional computations,
there is no room for rounding errors to occur. Figure 21 shows an example for such a
“raw” representative-map into which the SH coefficients have been color-encoded by the
same range-compression method as with the uncompressed implementation.

Finally, the remarks in this section also imply that both index-maps as well as
representative-maps must always by accessed by “nearest” (GL_NEAREST) filtering. Any
other regular filtering method mixes up the index numbers and/or the (incoherently
stored) representatives, such that any of these destroys the function of the algorithms.
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Scene # FPS w/o compression FPS with compression
1 6.7 6.5
2 6.7 6.6
3 6.7 6.4
4 6.6 6.5
5 6.6 6.5

Table 3: A FPS comparison of native vs. compressed SH lighting.

5.6.3 Results

Figures 22 and 23 show exemplary results of rendering with the SH coefficients compres-
sion technique detailed above. The images have intentionally not been modulated with
the regular diffuse textures of the polygons, in order to clearly demonstrate the visual
effects of the (de-)compression.

The most noticeable difference between the native (non-compressed) and compressed
SHL rendering is the fact that the images where compression was employed look “patchy”
or “blotchy”. This is an immediate consequence from grouping similar SH vectors and
assigning such groups just one representative vector. Several approaches can be taken
to deal with this appearance:

• Ignore it. Once we combine the bare SHL lighting results with their diffuse texture,
as is the normal case in practical applications, the blotchy patterns become less
perceptible, at least partially. Figures 23(b) and 23(d) demonstrate this.

• In the next section, we present a method to combine SHL and normal-mapping.
It turned out that as a side-effect, the technique examined there breaks up the
blotchy patterns.

• An explicit way of reducing the pattern artifacts is to filter the SH lighting. This
approach is examined in section 5.8.

Due to the additional texture lookup for the dependent SH coefficient reads, and the
relatively expensive “navigation” in the map of representative vectors, both of which
are detailed in the implementation section 6.4.2, the frame-rate that the decompression
method can produce is expected to be generally lower than that of the native method
without compression. I’ve run a small test series in order to verify this assumption: A
world was chosen and preprocessed both with and without our SH compression method.
I then picked a set of “representative” test scenes, and measured the FPS for both cases.
As table 3 indicates, the results are surprising: Employing SH compression only has a
marginal penalty on rendering FPS in our implementation. However, it is probably too
early to draw early conclusions from this test, as the test series was too limited to have
any significance, other bottlenecks in the rendering pipeline have not been considered,
and factors like differences in GPU memory consumption, texture object switching costs

63



5 Lighting with Spherical Harmonics

(a)

(b) (c)

Figure 22: (a) shows another screenshot of the index-maps. Figures (b) and (c) show
the same scene for reference, once with regular light-map lighting only, and once with
bare but dynamic SH lighting, based on the indices shown in (a).
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(a) (b)

(c) (d)

Figure 23: Rendering results with compressed SHL data. The images on the left show
bare lighting results, the right images are combined with the diffuse textures.

etc. have not been taken into account. A more detailed analysis of the performance of
compressed SHL is subject to future investigation.

The final important aspect of the compressed data approach is the compression ratio,
that is the savings with respect to file size. Table 4 shows the file sizes of two world files,
for each of which several variants of SHL data have been computed. The first line of each
world (those with 0 SH bands) indicates the file size when no SHL information at all is
stored in the respective file. The respective subsequent lines (those with 4 SH bands,
but 0 representatives) indicate SHL data with 4 bands that is stored in uncompressed
(native) form (zero representatives means no compression). The other lines state file
sizes for 4 and 8 SH bands at varying numbers of representatives. It is clearly visible
that the file size savings are enormous: For DmBase, the ratio of the pure SH data (that
is, with the base file size of 1093 kB subtracted) between the uncompressed version
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World File Size # SH Compression
File Name (in kB) bands
DmBase 1093 0 n/a (no SHL data contained)
DmBase 20305 4 0 Reps. (no compression)
DmBase 2717 4 16384 Reps.
DmBase 1949 4 4096 Reps.
DmBase 5789 8 16384 Reps.

ReNoElixir 7792 0 n/a (no SHL data contained)
ReNoElixir ca. 74000 4 0 Reps. (no compression)
ReNoElixir 10985 4 32768 Reps.

Table 4: World file sizes at different compression settings.

and the version with the 4 SH bands and 16384 representatives is 11.83, and the same
computation for the two ReNoElixir worlds with 4 SH bands each yields a size-saving
factor of 20.74 (!).

It turned out that another property of compressed SH rendering is that, surprisingly,
the implementation can be written in a technically more graceful way than can the
implementation for native rendering. The details are provided in section 6.4.2.

These facts, combined with the beneficial implementation, clearly suggest favoring
the presented compression of SH coefficients over the straightforward, native, non-
compressed approach, as it is clearly the best solution to SHL rendering that is presented
within the scope of this thesis.

5.7 Combining Normal-Mapping and SHL

Another subject for investigation within the scope of this thesis was the question whether
and how Spherical Harmonic Lighting may be combined with Bump-Mapping (i.e.
Normal-Maps).

5.7.1 Algorithmic Considerations

The key for combining SHL with Bump-Mapping is as follows: During the preprocessing
steps in CaSHL, the sub-term

max( ~N � ~s, 0) (13)

accounts for the spatial orientation of the surface at the sample point with respect to
the potential incoming light from the surrounding (hemi-)sphere. This does apply even
to shadowed and interreflected diffuse transfer. Combining this with bump-mapping
perturbs ~N as defined by the appropriate (tangent space) normal-map for the surface.

My initial idea was to actually factor the normal vectors from the normal-maps into the
overall SHL equation analogously to their contribution in hardware-accelerated lighting
as detailed in section 4.5: Initially omit the sub-term 13 from CaSHL (and thus make
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it not enter the SH coefficients generated by CaSHL), but rather account for it at the
very end, during rendering, when ~N is known on a per-pixel basis. Unfortunately, it
becomes clear very quickly that this approach is not practically feasible. Deferring the
sub-term 13 to the end of the computational pipeline not only requires rearrangements
of all involved computational steps that by doing so become far too expensive to be
computed at rendering time, it also counteracts the bounce lighting phase of CaSHL,
making interreflected transfer impossible to precompute.

Therefore, the second approach was to perturb ~N according to the normal-map right
from the start in CaSHL. That is, instead of obtaining ~N from the unique normal vector
that is stored with the surface (or the cross-surface interpolated normal vector if smooth-
groups are used), CaSHL loads the appropriate normal-map for the surface, manually
samples the normal-map at the appropriate sample point, and rotates the obtained
normal vector from tangent- into object-space (or rather world-space in this case), once
more taking any smooth-groups into account. The normal vector that is obtained is
finally used as ~N for all further computations.

The consequences of this approach are very straightforward:

• As the normal vectors from the normal-maps are directly factored into the SH coef-
ficients that CaSHL creates, all changes are local to CaSHL, and no other software
component that participates in the entire chain requires any changes. In particular,
the SHL renderer implementation does not require any code modification in order
to handle the situation, no matter whether normal-maps are taken into account or
not. Once more, this is because all relevant information is inherently stored in the
SH coefficients that are created by CaSHL.

• Besides the above mentioned substitution of the per-surface normal vector with
the normal-vectors from the normal-maps for ~N , CaSHL requires only a few subtle
changes in its direct- and bounce- lighting code:

One change is related to self-shadowing, a well-known problem from Phong lighting
(see e.g. [FK03], page 230): We now deal not only with a single normal vector,
but rather with two. One is the “old” per-surface normal vector that we used
earlier, the other is the newly introduced ~N that we obtained from the normal-
maps. One way to think about these two normals is that the old normal is a
large-scale approximation of the surface orientation, and the new ~N is a small-scale
approximation of the surface orientation. Therefore, we do not only have to test if
~N faces away from incoming light transfer (as is achieved with the max( . . . , 0) in
term 13, but the same test also has to be done for the old, “large-scale” per-surface
normal vector.

Another change arises from an optimization in the core RadiateTransfer() func-
tion of CaSHL: In this function, we optionally radiate or “shoot” the not-yet-
radiated transfer from several neighbouring patches of a common surface all at
once, as if it were a single big patch instead of several smaller patches. While
without normal-maps, all those patches used to share a common normal vector (as
they are all from the same surface and thus all shared the single per-surface normal
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vector), with normal-maps they now all have an individual, unique normal vector.
This in turn requires us to redetermine the normal-vector of the big accumula-
tive patch by properly computing the average normal vector for the contributing
original patches.

• The most uncomfortable consequence of this approach inherently results from the
way SHL-maps and normal-maps are combined: As you can see in the screenshots
throughout this thesis, the elements of both light-maps and SHL-maps are rela-
tively big tiles that cover the world surfaces. This is because each tile represents
a “patch”. As explained earlier, patches are used in both CaLight and CaSHL
for the radiosity-based light and transfer computations. As such, each patch is
unique. Even though several patches of several surfaces are stored in common
light- or SHL-maps, the limited storage for such maps plus the inherent properties
of the radiosity shooting solution enforces a relatively big size of the patches, and
thus the resulting tiles that cover all world surfaces.

The SHL patches’ size however is in high contrast to the size of the elements of the
normal-maps. The normal-map elements are neither unique to each world surface
(and thus a set of relatively few and small normal-maps can be repeated over and
over), and their size doesn’t affect the space and time requirements of the bounce
transfer stage in CaSHL either.

Consequently, a single SHL patch normally covers several hundred or even thou-
sands of normal-vectors of a normal-map.4 Therefore, the above briefly mentioned
sampling of the normal-map in order to obtain a new ~N for each SHL patch is in
fact much more difficult.

One possible solution to this problem is to actually rasterize the normal-map along
the shape of the currently considered SHL patch, and then to compute the aver-
age of all normal-maps within the rasterized result. This however must normally
be done manually (although an implementation that employs dedicated graphics
hardware is conceivable), and thus is truly cumbersome. I.e., the problems of tiling,
wrapping, clamping, aliasing etc. all have to be taken into account, just as with a
full graphics renderer.

Therefore, I implemented a simpler method that just takes a fixed number of
random samples of the normal-map within the “superimposed” rectangle of the
SHL patch, and averages them. This yields a much simpler implementation that
accounts for all the subtleties of the full rasterization method, whereby the obtained
results are estimated to be of almost equal or just marginally worse quality than
those that the rasterization method would provide.

The last mentioned property suggests that, depending on the actual normal-map, the
average of several thousand normal-map vectors tends towards the (0 0 1) default vector
that yields the same result as if no normal-mapping was used. That in turn suggests

4In the comments to the source code of my implementation (see CaSHL/Init2.cpp), I show that in the
default case at least 6200 (!) normal-map elements are covered by a single SHL element.
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Figure 24(a): A reference shot of the first scene.

omitting accounting for normal-maps right from the start, but the results that I obtained
were very interesting nonetheless.

5.7.2 Results

This section presents my results of combining SHL with Normal-Mapping in several
series of commented screenshots. Each series shows several screenshots of the same
scene, where the effect with and without normal-maps combined with SHL as described
in the preceding section is presented.

The screenshots that show the SHL results have intentionally not been modulated
with the appropriate diffuse-maps, and are therefore grayscale rather than colored. This
pronounces the pure SHL effect, and is thus much better suited for comparing the results
before and after the introduction of normal-mapping.

First Series

Figure 24(a) shows the common scene of the first series of screenshots. Only Phong-
style lighting has been used to create this screenshot, Spherical Harmonic Lighting has
intentionally not been employed. This image is for giving an idea how the scene looks
when color-textured, and it also shows some of the features of the normal-maps. E.g.,
the small sand dunes are a result of the normal-maps. Also the brick wall on the right
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Figure 24(b): SHL-maps only (no normal-mapping and no color modulation).

Figure 24(c): SH lighting with normal-maps taken into account.
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Figure 24(d): SH lighting with normal-maps taken into account.

Figure 24(e): SH lighting with normal-maps taken into account.
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Figure 25(a): A reference shot of the second scene.

and the stone walls on the left employ normal-maps, although their effect is not clearly
pronounced in this image.

Figure 24(b) shows the same scene, but rendered with SHL only. This is the situation
before normal-maps were combined with SHL. For clarity of the SHL contribution, the
diffuse-maps have intentionally been omitted.

Figures 24(c) to 24(e) present the same Spherical Harmonic Lighting as figure 24(b),
but this time combined with normal-maps. The three images have been taken at different
times of day, i.e. at different positions of the SHL light source, in order to demonstrate
the effect clearly.

The structure and effect of the underlying normal-maps is clearly visible, both at the
sand floor, the brick wall, and the stone walls in the background.

Second Series

As with the first series, the second series starts with a reference screenshot of the scene,
see figure 25(a). Once more, the contribution of the normal-maps is well visible at the
structure of the near sand floor and the far stone walls.

Figures 25(b) and 25(c) present the same scene with Spherical Harmonic lighting
only. Compare that to figures 25(d) and 25(e), that additionally take normal-maps into
account.
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Figure 25(b): SHL-maps only (no normal-mapping and no color modulation).

Figure 25(c): SHL-maps only (no normal-mapping and no color modulation).
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Figure 25(d): SH lighting with normal-maps taken into account.

Figure 25(e): SH lighting with normal-maps taken into account.
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Figure 26(a): A reference shot of the third scene.

As a side-effect, this series of images demonstrates another feature of SH lighting:
The blotchy appearance of scenes that are lit with SH lighting from compressed SH
coefficients as detailed in section 5.6 is broken by the irregularities that are introduced
by perturbed normal vectors. This is especially noticeable on the large floor surface in
the above mentioned figures.

Third Series

The third series is organized like the previous two: Figure 26(a) provides a common
impression of the scene, whereas figures 26(b) and 26(c) present the scene with SHL
lighting, both with and without normal-mapping.

In figure 26(d), I’ve repeated 26(a) and 26(c), as their minification and direct facing
for better comparison demonstrates very clearly the results of implementing normal-
mapping for SH lighting.

5.8 SHL Filtering

The final subject of investigation within the scope of this thesis was the question if and
how SH rendering output can be filtered.
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Figure 26(b): SHL-maps only (no normal-mapping and no color modulation).

Figure 26(c): SH lighting with normal-maps taken into account.
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Figure 26(d): Scaled down repetitions of figures 26(a) and 26(c) that have been arranged for direct
comparison.

5.8.1 Motivation and Approach

The matter was mostly motivated by the “blotchy” appearance of the rendering output
that occurred as a result of SH compression with representative vectors, with the goal
to at least render the effect a little milder.

Unfortunately, achieving hardware-supported, perspective correct filtering, is inher-
ently difficult in the context of the above presented SHL (de-)compression routines: In
order to obtain the SH coefficients, a two-step dependent texture lookup is required, first
into the index texture, and with the resulting value into the table (texture) of encoded
representatives. This in turn renders all use of hardware-provided filtering methods
other than “nearest” futile.

Therefore, the decision was made to simply employ bilinear filtering by quadruple
multi-sampling: Each fragment is computed as the average of four samples, taken at
quarters of an SHL-map element offset in each direction.

5.8.2 Results

Figure 27 shows two images of the same scene. Both images are based on the same
compressed(!) SH data. Figure 27(a) shows the original scene, figure 27(b) is the same,
except with filtering enabled. Figure 28 shows additional rendering results from the
filtering by multi-sampling, where the effect is clearly visible.

Performance-measurements indicated that the frame-rate with the quadruple subsam-
pling indeed quartered. As can be expected from table 3, all frame-rates that I measured
in the same test scenarios were below 2 frames per second (usually between 1,5 and 1,8).
While the visual results are promising, it remains a matter of faith that either faster
filtering methods or faster hardware can bring the performance of this approach into
acceptable bounds.
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(a) Without SHL filtering.

(b) With SHL filtering.

Figure 27: The same scene twice, once before and once after filtering was employed.
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(a) (b)

Figure 28: More results from SH filtering.
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6 Implementation

6.1 Introduction to the Ca3D-Engine

The entire theory that is presented in this thesis has been implemented in the framework
of the Ca3D-Engine in clearly separated, well-defined modules.

Before this thesis was begun, the Ca3D-Engine qualified as the framework for imple-
mentation due to its existing features at that time: Its cross-platform code proposed
a reasonable development both on the Windows as well as the Linux platforms, and
its underlying, optimized data structures for storing and rendering scene descriptions
proved to be ideal ground for implementing all of the presented lighting methods.

In order to facilitate the discussion in other sections, I will provide a brief introduction
into the internals of the Ca3D-Engine here. Please note that familiarizing yourself with
the Ca3D-Engine also from a user, artist, or developer’s perspective is highly recom-
mended for the purposes of this thesis. This is best achieved by visiting the Ca3D-Engine
website at http://www.Ca3D-Engine.de, where demo and development-kit downloads
are provided, along with exhaustive documentation (see [Fuc04c] and [Fuc04a]).

6.1.1 The Preprocessing Pipeline for Worlds

A scene for the Ca3D-Engine is commonly called a World File. World files consist
both of static, precomputed geometry, as well as lists of and references to dynamic
components. The static geometry is typically the most prominent part of a world,
created by convex polyhedra that form the walls, the floors, ceilings, and basically all
other gross architecture. The dynamic parts are usually smaller entities. Entities are free
to move within the static geometry in an arbitrary fashion. Typical examples for entities
include the human players (both the local observer as well as other human players that
join a world via a network link), all server-controlled lifeforms like opponents, animals,
monsters, items, plants, and many more.

The World Editor

Worlds are initially created by the artist within a specialized world editor. Such editors
permit modeling the architecture of a world with polyhedron-based building blocks,
referred to as brushes in the nomenclature of the editor. The accumulated set of all
brushes forms the static geometry of the world.

The same editor also permits populating the static architecture with entities. Entities
retain a dynamic functionality during their entire lifetime, and can consist of brushes,
special properties, or both.

The details about world editors are provided in their respective manuals, and also in
[Fuc04a]. For now, it is important to note that worlds are the collection of static brushes
(convex polyhedra) plus a set of dynamic entities.
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Binary Space Partitioning

Maybe the most important step that the Ca3DE preprocessing compilers undertake is
the hierarchical subdivision of a world into spatial convex cells.

In order to achieve this, the binary space partitioning compiler (CaBSP) performs the
following steps:

1. Immediately after the world file from the editor has been loaded, CaBSP computes
the bounding polygons of each polyhedron, which have originally been stored just
as sets of intersecting planes. The polygons are flat, 2-dimensional surfaces, embed-
ded in 3-dimensional space. The original polyhedra are kept as auxiliary structures,
but they are no longer needed for essential computations.

2. A binary space partitioning (BSP) tree is built over the set of the resulting sur-
faces. As finding an optimal tree is exponentially expensive, a clever split-choosing
heuristic is employed in order to obtain a good tree in O((total #surfaces)2) time.
The BSP split planes are chosen from the set of planes of the remaining surfaces.
As a result, all surfaces eventually get stored in a BSP tree node plane. Moreover,
we also assign a list of surfaces to each leaf. This list is composed of the surfaces
that are in the node planes that form the leaf and that simultaneously “touch” the
leaf.

3. Then the tree is “portalized”. Portals are the regions where two adjacent leaves
touch each other but are not separated by a regular solid surface. Portals are
also always planar surfaces. They essentially define where one can pass from one
leaf into the neighbouring leaf. This property makes them extremely useful for
many subsequent processing steps, and even for real-time portal-based rendering
techniques.

4. Using a proper starting point, the world is next flood-filled by walking from one
leaf to the next, passing through portals. This reliably identifies regions in the
world that are never accessible by observers (assuming they cannot walk through
walls). Throwing away all surfaces that cannot be reached by this kind of flood
fill does not change the architectural impression for the observer, but reduces the
surface count often by more than 50%, yielding a big performance win. This is
also a big improvement over the Quake series of engines, which used to flood fill
from outside in, yielding far less optimal results than the fill from inside-out as in
the Ca3D-Engine.

5. After the removal of unused surfaces, the remaining surfaces are split whenever
two of them intersect. Then, steps 2 to 4 are repeated, because removing sur-
faces essentially invalidates the previously created BSP tree (which also becomes
suboptimal after the underlying geometry has been modified).

6. Now the remaining surfaces span the minimum overall surface of the specified ar-
chitecture. As the surfaces might have become very fragmented in the previous
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steps, we now add a merge step that merges two surfaces whenever they are ad-
jacent, coplanar, and the result is also a convex surface. This once more enforces
a repetition of steps 2 to 4, where step 4 is mostly required for informational
purposes, not for removing additional geometry.

This procedure is actually performed twice, once for the draw hull of the world, and
once for the clip hull, as these two hulls are generally different (e.g. you can see through
glass, but cannot walk through it, or you can walk through water, but cannot see the
ground.)

Finally, the CaBSP compiler also covers every surface with an empty, dummy light-
and SHL-map. That means that every surface of the world is already prepared at this
point to receive light-maps and SHL-maps. Moreover, the memory both in RAM as well
as on disk (within the output file) is allocated for light-maps (filled with pure white data
as dummy light-maps) in full depth even at this point. This is not so bad though, as
in nearly all cases the CaLight tool is run to overwrite these dummies with meaningful
light colors. SHL-maps are better, because their number of bands is kept dynamically
changeable at a later time. Therefore, CaBSP prepares everything for SHL-map storage
for each surface, but only inserts a 0-band SHL-map, keeping the memory overhead
initially negligible.

Computing the Potentially Visibility Set

The second big step in preprocessing worlds for the Ca3D-Engine is to determine which
leaves of the previously created BSP tree can potentially be seen from any given leaf.
The result of these computations is commonly called the Potential Visibility Set (PVS)
of a world, determined by the CaPVS compiler. The purpose of the PVS is almost solely
optimization for increasing performance, as PVSs are a great method to determine very
quickly (in O(1) time) the (gross) relevance of objects to each other on many occasions.
Both the engines’ real-time rendering as well as all subsequent compile tools for light-
maps and SHL-maps profit significantly from PVS information.

Computing PVSs is a nontrivial task though. Teller [Tel92] describes a method that
is mathematically thorough, but also mathematically and computationally challenging.
His methods starts by considering portal sequences. Teller’s portals are conceptually
the same as those constructed by CaBSP in the previous step. Portals also have an
orientation in the sense that they permit passage of light or objects only from one side to
the other, pretty much like a one-way road does. He then determines all5 possible ways to
“walk” from a given BSP leaf L1 to another leaf L2, and thereby writes down the portals
that have been passed during that walk. One such set of recorded portals is called a
“portal sequence”. The next step is to determine if at least a single stabbing line through
the entire portal sequence exists. If it does, L1 can see L2 (and vice versa), otherwise the
two leaves cannot see each other. Teller determines the existence of a stabbing line in a
mathematically and computationally complex manner: He first transforms all edges of all

5Only “reasonable” ones of course, i.e. the number of portal sequences can easily be cut by simple
checks against a bounding box etc.
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portals of in the sequence into the space of Plücker coordinates. The resulting numbers
then form a system of linear inequalities in 6-dimensional space, that can be solved by
methods of linear optimization. During my own tests with Potential Visibility Sets my
own implementations of Teller’s theory suffered from degeneracies, rounding errors in
the Simplex method, and the sheer computational demand. Although portal sequences
are typically short (e.g. 10 portals on average), each such sequence yields normally
a system of linear inequalities of 40 and more constraints in 6 variables. Multiplying
this with the number of possible portal sequences between a pair of leaves yields a very
expensive algorithm for determining the visibility just between a single pair of leaves!
Multiply this again with essentially O(#leaves2) for all pairs, and the entire matter
becomes practically infeasible.

For CaPVS, I therefore developed another strategy that also operates on portal se-
quences, but determines the existence of stabbing lines differently, by a method that
works in the usual 3-dimensional space: Given an arbitrary portal sequence, the first
portal is considered as a unidirectional, planar light-source. The light passes through
the other portals (if the portal is passed in its proper direction), which shape it into a
light pyramid. This method is mathematically not fully equivalent to Tellers approach.
Rather, it tends to conservatively overestimate the PVS on rare occasions. I’ve never
had the opportunity to reliably compare the differences in the results of both methods
(rounding errors and the far too expensive Plücker approach dilute any results), but I
submit the overestimation of my method is significantly less than 1%.

Trivial implementations of either Teller’s method or the 3D-method of CaPVS tend
to construct their portal sequences by exploring neighboring leaves in a strictly recursive
manner. This, however, leads to an exponential running time per leaf, and thus for the
overall algorithm. It also does not permit exploiting previously computed knowledge,
i.e. no advantage can be taken from the previously computed fact “L2 is visible from
L1“ when later the question arises if L1 is visible from L2. (This seems counterintuitive,
and has its roots in the recursive proceeding of the algorithm – it might later discover
additional visibility that it can only retrieve without taking such abbreviations.)

Fortunately, the overall algorithm can be changed such that its runtime moves from
exponential behaviour to essentially polynomial behaviour. This is achieved by changing
it from exploring the world and recording all found visibility relationships to simply and
strictly answering the question “Can L1 see L2?”. Doing so has several advantages: First,
by learning that L1 can see L2, we know that also the reverse visibility is established: L2

can see L1. Second, when the algorithm works on determining the visibility between L1

and L2, and as a by-product finds the mutual visibility of other pairs of leaves (e.g. all
combinations of leaves that are spatially located between L1 and L2), explicit tests for
all those pairs can be saved later. Third, if we run a very quick and simple ray-sampling
test on all pairs of leaves as a first step in the program, we may save running the more
expensive main algorithm on all previous successfully tested pairs later.

The latter, essentially polynomial method has been implemented in the CaPVS com-
piler. It is numerically extremely stable, and runs in long (often several hours for complex
worlds), but reasonable time.
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Precomputing Lighting

At this point, the next and final steps in compiling a map include precomputing the
radiosity-based and Spherical Harmonics-based lighting. These are the essential topics
of this thesis, and have therefore been presented in their own sections.

6.1.2 The Ca3DE World File Format

For compiling a world for Ca3DE, only the CaBSP compile step is mandatory. It cre-
ates full-bright lighting and full-visibility PVS information. All other compiler runs are
optional, as is their order. The respective compilers overwrite the defaults in a world
file with their computed values.

6.2 Implementation of Lighting with Light-Maps

The implementation of lighting with light-maps reduces to considering the light-maps as
the diffuse lighting component, and as such modulating them with the regular surface
textures which define the diffuse reflectivity of the surface.

With the OpenGL 1.1 API [WNDO99], the multiplication is performed as a two-pass
blending operation: The first pass renders the diffuse textures as normal, and the second
pass renders the light-maps with blending enabled and glBlendFunc(GL DST COLOR,
GL ZERO).

With OpenGL 1.2 and newer APIs [WNDO99], multi-texturing can be exploited to
achieve the same result in a single pass.

On programmable GPUs with vendor specific API extensions (e.g. [HM01]) or high-
level shader languages like Cg [FK03], HLSL or GLSL [Ros04], the multiplication can
conveniently be performed in custom code.

The same concepts are true for the appropriate DirectX equivalents and other graphics
APIs [FvDFH90].

6.3 Implementation of Dynamic Lighting on Dedicated 3D Hardware

6.3.1 The Acquisition and Organization of Artwork

The first side-effect that any implementors of dynamic lighting encounter is the fact that
the old artwork that they used to use is no longer sufficient to support the new technology.
While earlier it was sufficient to cover polygon surfaces with texture images that were
pre-lit like photographs, possibly enhanced with light-maps (see section 3), more complex
surface descriptions are required for dynamic lighting. The surface descriptions data is
therefore stored in (sets of) texture map images that store the data either directly or in
some kind of color-encoded form, whatever is best suited.

Hardware-accelerated Phong lighting typically requires the presence of diffuse-maps,
normal-maps, specular-maps and luminance-maps. The creation of these map images is
mostly an artistic problem, where the artists have to understand the use and purpose of
each image within the Phong lighting equation.
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The individual files are typically kept in groups of related image file sets that are
distinguished by additional file suffixes. Another way of file organization is to describe
the file relationships in separate material definition scripts that are normally handled by
Material Systems.

Nomenclature and Organization of new Texture Images

For Ca3DE, I have decided to suffix the base file names with diff for diffuse-maps,
norm for normal-maps, bump for height-maps, spec for specular-maps, and luma for
luminance-maps. Each of these suffixes is further followed by one of the supported
file format suffixes like .png, .tga, or .bmp. Therefore, examples for complete texture
image file names in this naming scheme are BaseDoor1 diff.png, Barrel07 norm.tga,
or Wall28 luma.png.

For organizing all these texture files on disk, it is desirable to organize them hierar-
chically in an own directory and arbitrary subdirectories. The problem with this kind
of organization was that the level editors that I used to create Ca3DE worlds could
only deal with images files that were stored in proprietary “WAD” files that in turn
could only handle file names without path specifications and with lengths of less than 16
characters. Really the best and most expensive solution to this problem was to create a
new editor for Ca3DE editing, but that was far too complex a subproblem to be solved
within the scope of this thesis.

Instead, I organized all textures as desired in a directory and subdirectories. The only
condition that the textures have to satisfy is that no pair of two texture files must have
a common name, not even if they are stored within different subdirectories. Then I use a
Perl script that first scans the entire textures directory (and recurses into subdirectories),
and records all occurrences of *_diff.* files. The found files are then converted into
WAD file format and stored in a newly created WAD file. Thereby, both their path as
well as their suffix is omitted in order to account for the 16 character limitation.

This WAD file can then be used for world editing with the existing editors. Later,
during level load time, the Ca3D-Engine reverses the process by scanning the textures
directory recursively for the previously stored short texture name, which is extended
with the well-known suffixes as described above.

Aspects of Normal-Map creation

Normal-maps are somewhat interesting, as there are several complex ways to create
them. One method that requires a lot of work but yields optimal results is to create the
shape of the surface as a highly detailed polygonal model in a 3D modelling program.
The model’s surface is then orthogonally projected onto a much lower detail surface. The
projection allows the recording of the high-polygonal surface directly in a normal-map
that covers the low-polygonal surface and is the receiver of the projection. This method
works both for individual (tiling) texture images (especially for those that have sharp
and well defined contours as e.g. technical panels) as well as for highly complex models
like human characters.
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The second (and simpler) technique for creating normal-maps is to first create a
grayscale height-map that represents the height of the surface. A height-map can ei-
ther be created by geometric means similar to the first method mentioned above, but is
often also hand-painted by artists. As hand-painting a height-map requires an enormous
spatial sense, making good height-maps is very difficult and works best with irregular,
organic, or high frequency surfaces. Examples include sand dunes, bubbles, scratches or
small holes.

Best results are achieved by employing both methods for creating a single normal-map
simultaneously: First, a normal-map is created that contains the well-defined contours
with the first method. Another normal-map is then created with the less well-defined
shape elements, e.g. scratches and bullet holes. Finally, both normal maps are combined
into a single resulting normal map.
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6.3.2 Rendering

The implementation of the Phong shading model on programmable GPUs, with the help
of high-level languages such as NVidias Cg, is straightforward. As for almost all combi-
nations of diffuse-, normal-, specular-, luminance- and light-maps specific Cg vertex- and
fragment-shaders exist for both the ambient and the per-light-source rendering passes, I
do not reproduce them in full detail here. Rather, here is a short and simple example of
such a fragment shader for NV3X GPUs that handles the per-light-source contribution
of a material that comes with a diffuse-, normal-, and specular-map:

1 void main(in float2 InTexCoord : TEXCOORD0,
in float3 InEyeVector : TEXCOORD1,
in float3 InLightVector : TEXCOORD2,
in float3 InLightVectorA : TEXCOORD3,

5 out float4 OutColor : COLOR,
uniform float3 LightColor,
uniform sampler2D DiffuseMapSampler,
uniform sampler2D NormalMapSampler,
uniform sampler2D SpecularMapSampler)

10 {
const float3 EyeDir =normalize(InEyeVector);
const float3 LightDir =normalize(InLightVector);
const float3 Halfway =normalize(EyeDir+LightDir);
const float3 Normal =(tex2D(NormalMapSampler, InTexCoord).xyz−0.5)∗2.0;

15

// IMPORTANT: Note that ’InLightVector’ and ’InLightVectorA’ are
// ENTIRELY DIFFERENT!
// Only ’InLightVectorA’ is good for attenuation computations (world space),
// while ’ InLightVector’ ( local tangent space) takes SmoothGroups into account!!!

20 // So they must never be collapsed , even if the profile permitted that !
const float Atten =saturate(1.0−length(InLightVectorA));

const float diff = saturate(dot(Normal, LightDir));
const float spec =diff>0.0 ? saturate(dot(Normal, Halfway )) : 0.0;

25

const float4 DiffuseC =tex2D(DiffuseMapSampler, InTexCoord);
const float4 SpecularC=tex2D(SpecularMapSampler, InTexCoord);
const float4 LightC =float4(LightColor, 0);

30 OutColor=Atten∗LightC∗(diff∗DiffuseC + pow(spec, 32)∗SpecularC);
}

Listing 1: A Cg fragment program for NV3X GPUs for the diffuse and specular lighting
contributions with normal-mapping.
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6.4 Implementation of Spherical Harmonic Lighting

6.4.1 Native SHL Lighting

The implementation of native SHL lighting as explained in section 5.5 is straightforward,
but the inherent limits of GPU programs require having separate per-pixel programs
for each number n of SH bands. I therefore provide implementations for the most
common cases of 2 and 4 SH bands (4 and 16 coefficients, respectively). The section
about compressed SHL data will show a solution that can deal with fluctuating n. For
reference, here is the per-pixel program for rendering SH lighting with 16 coefficients:

1 void main(in float4 InColor : COLOR,
in float2 InTexCoord Diff : TEXCOORD0,
in float2 InTexCoord SHLMap : TEXCOORD1,

out float4 OutColor : COLOR,
5 uniform float4 LightSourceCoeff1, // Light source coeffs 0.. 3

uniform float4 LightSourceCoeff2, // Light source coeffs 4.. 7
uniform float4 LightSourceCoeff3, // Light source coeffs 8..11
uniform float4 LightSourceCoeff4, // Light source coeffs 12..15
uniform sampler2D DiffuseMapSampler,

10 uniform sampler2D SHLMapSampler1, // For SHL coeffs 0.. 3
uniform sampler2D SHLMapSampler2, // For SHL coeffs 4.. 7
uniform sampler2D SHLMapSampler3, // For SHL coeffs 8..11
uniform sampler2D SHLMapSampler4) // For SHL coeffs 12..15

{
15 const float4 DiffuseC=tex2D(DiffuseMapSampler, InTexCoord Diff);

const float4 SHLMap1C=tex2D(SHLMapSampler1, InTexCoord SHLMap)−0.5;
const float4 SHLMap2C=tex2D(SHLMapSampler2, InTexCoord SHLMap)−0.5;
const float4 SHLMap3C=tex2D(SHLMapSampler3, InTexCoord SHLMap)−0.5;

20 const float4 SHLMap4C=tex2D(SHLMapSampler4, InTexCoord SHLMap)−0.5;

const float4 v=4.0∗(dot(SHLMap1C, LightSourceCoeff1)+
dot(SHLMap2C, LightSourceCoeff2)+
dot(SHLMap3C, LightSourceCoeff3)+

25 dot(SHLMap4C, LightSourceCoeff4));

const float Result =clamp(v, 0.0, 1.0);
const float4 Result4 =float4(Result.xxx, 1.0);

30 // OutColor=Result4; // For debugging.
OutColor=DiffuseC∗InColor∗Result4;

}
Listing 2: Rendering SH lighting with 16 coefficients.
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6.4.2 Procedurally generated Cg Shaders for Compressed SHL

The implementation of decompressing the precomputed compressed SHL data requires
a custom fragment program that runs on the graphics processor. My wish code had
looked like the following listing, which however only shows nonfunctional pseudo code
due to the limitations of the Cg language profiles for NV3X GPUs:

1 void main(in float4 InColor : COLOR,
in float2 InTexCoord Diff : TEXCOORD0,
in float2 InTexCoord SHLMap : TEXCOORD1,

out float4 OutColor : COLOR,
5 uniform float4 LightsourceSHLCoeffs[], // Lightsource SHL coeffs in 4−tuples.

uniform float NrOfColumns, // Number of vector columns in the SHLCoeffTable.
uniform float TableWidth, // Width of the SHLCoeffTable, in pixels.
uniform int NrOfPixels, // =ceil(n∗n/4), #pixels per representative vector .
uniform sampler2D DiffuseMapSampler,

10 uniform sampler2D IndicesSampler,
uniform sampler2D SHLCoeffTableSampler)

{
const float4 DiffuseC=tex2D(DiffuseMapSampler, InTexCoord Diff);
float4 Index =tex2D(IndicesSampler, InTexCoord SHLMap);

15 float Result =0.0;

// Index.r specifies the row number 0..255, scaled by 1/255 (!) to range 0..1.
// Index.g specifies the column number, also scaled by 1/255 (!) to range 0..1.
// However, we need it to be scaled by NrOfPixels/TableWidth.

20 for (int i=0; i<NrOfPixels; i++)
{

// This can be optimized by computing some values outside of the loop.
const float2 LookupPos=float2((Index.g∗255.0∗NrOfPixels+i)/TableWidth,

Index.r∗255.0/256.0);
25 const float4 FourCoeffs=4.0∗(tex2D(SHLCoeffTableSampler, LookupPos)−0.5);

Result+=dot(FourCoeffs, LightsourceSHLCoeffs[i]);
}

30 Result=clamp(Result, 0.0, 1.0);

// OutColor=float4(Result.xxx, 1.0); // For debugging.
OutColor=DiffuseC∗InColor∗float4(Result.xxx, 1.0);

}
Listing 3: Wish-code in pseudo Cg.

Note the careful transfer from the Index variables .r and .g values to the LookupPos value
in lines 23 and 24. These computations seem to be simple in hindsight, but initially it
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took me considerable effort to figure them out. Also, debugging is often a non-trivial task
with GPU programs (there is no printf() function to print out intermediate values) and
requires a lot of creativity and patience. (E.g. I frequently transformed intermediate
results into color values, emphasizing the numerically interesting ranges, in order to
“see” their correctness visually. This is still much harder than seeing them numerically
printed on screen, though.) Unfortunately, some important constructs in the above
(pseudo-)code are not supported by any current Cg language profile: neither arrays of
unknown size (line 5), nor variable array indexing (line 27), nor arbitrary for-loops (line
20) are supported.

In order to make the above code conform to e.g. the NV3X Cg profiles6, I employed
a loop-unrolling technique, similar to the old optimization method from assembly pro-
gramming that was employed mostly on processors with no internal cache:

1 void main(in float4 InColor : COLOR,
in float2 InTexCoord Diff : TEXCOORD0,
in float2 InTexCoord SHLMap : TEXCOORD1,

out float4 OutColor : COLOR,
5 uniform float4 LSC[25], // LightSource SHL Coeffs in RGBA 4−tuples

// (25 elements provide enough space for up to 10 SHL bands).
uniform float NrOfColumns, // Number of vector columns in the SHLCoeffTable.
uniform float NrOfPixels, // Number of pixels (4−tuples) per SHL vector.
uniform float TableWidth, // Width of the SHLCoeffTable, in pixels.

10 uniform sampler2D DiffuseMapSampler,
uniform sampler2D IndicesSampler,
uniform sampler2D S) // ”SHLCoeffTableSampler”

{
const float4 DiffuseC=tex2D(DiffuseMapSampler, InTexCoord Diff);

15 float4 i=tex2D(IndicesSampler, InTexCoord SHLMap); // The index.
float r=0.0; // The result .

// i .r specifies the row number 0..255, scaled by 1/255 (!) to range 0..1.
// i .g specifies the column number, also scaled by 1/255 (!) to range 0..1.

20 // However, we want it to be scaled by NrOfPixels/TableWidth, see below.

// Reverting to unrolled loops ...
i . r=i.r∗255.0/256.0; // Correct the scale .
i .g=i.g∗255.0∗NrOfPixels/TableWidth; // Correct the scale.

25

// The coordinate distance between two horizontally neighbored pixels .
const float OfsX=1.0/TableWidth;

6The NV3X profiles were the most advanced Cg profiles at the time of writing, although newer NVidia
and ATI GPUs are already available. However, my future implementations will all employ OpenGL
2.0 rather than Cg for fragment-shaders, but I expect the principle statements of this section to
remain valid.
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29 if ( 0<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 0]); i.g+=OfsX; }
30 if ( 1<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 1]); i.g+=OfsX; }

if ( 2<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 2]); i.g+=OfsX; }
if ( 3<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 3]); i.g+=OfsX; }
if ( 4<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 4]); i.g+=OfsX; }
if ( 5<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 5]); i.g+=OfsX; }

35 if ( 6<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 6]); i.g+=OfsX; }
if ( 7<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 7]); i.g+=OfsX; }
if ( 8<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 8]); i.g+=OfsX; }
if ( 9<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[ 9]); i.g+=OfsX; }
if (10<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[10]); i.g+=OfsX; }

40 if (11<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[11]); i.g+=OfsX; }
if (12<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[12]); i.g+=OfsX; }
if (13<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[13]); i.g+=OfsX; }
if (14<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[14]); i.g+=OfsX; }
if (15<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[15]); i.g+=OfsX; }

45 if (16<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[16]); i.g+=OfsX; }
if (17<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[17]); i.g+=OfsX; }
if (18<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[18]); i.g+=OfsX; }
if (19<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[19]); i.g+=OfsX; }
if (20<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[20]); i.g+=OfsX; }

50 if (21<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[21]); i.g+=OfsX; }
if (22<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[22]); i.g+=OfsX; }
if (23<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[23]); i.g+=OfsX; }
if (24<NrOfPixels) { r+=dot(4.0∗(tex2D(S, i.gr)−0.5), LSC[24]); }

55 const float Result=clamp(r, 0.0, 1.0);

// OutColor=float4(Result.xxx, 1.0); // For debugging.
OutColor=DiffuseC∗InColor∗float4(Result.xxx, 1.0);

}
Listing 4: Initial code for the Cg NV3X profile.

The resulting code is fairly ungainly7, but it does work on the NV3X Cg fragment shader
profile.

The problem with the second fragment program is that it is either written for a fixed
number of SH bands/coefficients, or that it is longer than necessary, unnecessarily wast-
ing GPU processing time. Therefore, I finally came up with the solution of generating

7The printed code above got many variable names significantly shortened, in order to account for the
limited page width of this book. The real code uses variables with more descriptive names. The real
code is also even more complicated, for reasons that are irrelevant to this discussion (debugging, tone
reproduction, etc.). These issues have also been omitted here. Please refer to the implementation for
full details.
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the code for the fragment shader procedurally. That is, the Cg fragment program’s code
is generated by C++ code at run-time. As the number of SH bands/coefficients is well
known at run-time, the Cg code can be generated exactly to meet the requirements of the
current and actual number of SH bands/coefficients, avoiding the problems of the previ-
ously presented fragment program. As all other Cg programs in the Ca3D-Engine, the
resulting Cg fragment program is compiled and linked dynamically by the Cg compiler
at run-time anyway. As compiling and linking at run-time is a necessary prerequisite for
employing procedurally generated code, all technical assumptions are met for making
this approach work. The following listing shows the relevant section of C++ code for
generating the desired Cg fragment program:

1 const unsigned long NR OF SH COEFFS=
FaceT::SHLMapInfoT::NrOfBands∗FaceT::SHLMapInfoT::NrOfBands;

const unsigned long NrOfPixels=(NR OF SH COEFFS+3)/4;

5 static char DynamicCode[20000];

sprintf (DynamicCode,
” void main(in float4 InColor : COLOR, \n”
” in float2 InTexCoord Diff : TEXCOORD0, \n”

10 ” in float2 InTexCoord SHLMap : TEXCOORD1, \n”
” out float4 OutColor : COLOR, \n”
” uniform float4 LightsourceSHLCoeffs[%lu], // Light coeffs in 4−tuples. \n”
” uniform float NrOfColumns, // # vector columns in the SHLCoeffTable. \n”
” uniform float TableWidth, // Width of the SHLCoeffTable, in pixels. \n”

15 ” uniform sampler2D DiffuseMapSampler, \n”
” uniform sampler2D IndicesSampler, \n”
” uniform sampler2D SHLCoeffTableSampler) \n”
” { \n”
” const float4 DiffuseC=tex2D(DiffuseMapSampler, InTexCoord Diff); \n”

20 ” float4 Index =tex2D(IndicesSampler, InTexCoord SHLMap); \n”
” float Result =0.0; \n”
” \n”
” // Index.r specifies the row num 0..255, scaled by 1/255 (!) to range 0..1. \n”
” // Index.g specifies the column num, also scaled by 1/255 (!) to range 0..1. \n”

25 ” // However, we want it to be scaled by NrOfPixels/TableWidth, see below. \n”
” \n”
” // Still unrolling the for−loop, but this time exactly as needed! \n”
” Index.r=Index.r∗255.0/256.0; // Correct the scale . \n”
” Index.g=Index.g∗255.0∗%lu.0/TableWidth; // Correct the scale. \n”

30 ” const float PixelOffsetX=1.0/TableWidth; // Hor. distance betw. two pixels. \n”,
NrOfPixels>0 ? NrOfPixels : 1, NrOfPixels);

for (unsigned long PixelNr=0; PixelNr<NrOfPixels; PixelNr++)
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{
35 sprintf (DynamicCode+strlen(DynamicCode),

”Result+=dot(4.0∗(tex2D(SHLCoeffTableSampler, Index.gr)−0.5), ”
”LightsourceSHLCoeffs[%2lu]);”,
PixelNr);

if (PixelNr+1<NrOfPixels) strcat(DynamicCode, ” Index.g+=PixelOffsetX;”);
40 strcat (DynamicCode, ”\n”);

}

strcat (DynamicCode,
” Result=clamp(Result, 0.0, 1.0); \n”

45 ” \n”
” // OutColor=float4(Result.xxx, 1.0); // For debugging. \n”
” OutColor=DiffuseC∗InColor∗float4(Result.xxx, 1.0); \n”
” } \n”);

50 FragmentShader30 SHL Compressed=UploadCgProgram(CG PROFILE FP30,
DynamicCode);

Listing 5: C++ code for generating Cg code on demand.

In fact, the above final solution in listing 5 works due to the assumption that the
NrOfPixels, or rather, the number of SH bands that are present in the world file,
remains constant after loading the world. This is a very reasonable assumption, as the
number of SH bands can only be changed by reprocessing a world with CaSHL.

The advantages and flexibility that is introduced by this final approach are subtle, but
worthwhile: The NrOfPixels is now directly built into the fragment program, such that
there is no need to keep it as an external C++ variable that must be set as a fragment
program parameter on each binding of the program.

Moreover, this means that this approach is even more flexible than my non-compressed
SH fragment shaders: Whereas I previously had to provide a separate, “hardwired”
fragment program for all numbers of SH bands that I’d ever expect to load into the
Ca3D-Engine (obviously a very inflexible situation), the above code can conveniently
handle arbitrarily many SH bands that are within reasonable bounds.

6.4.3 Normal-Mapping and SHL

Due to the way how we algorithmically take normal-maps into account for our SHL
computations, only the very first initialization steps of CaSHL need customization. Af-
ter that, the normal-vectors are directly factored into the spherical functions that all
subsequent code can treat unmodified. That is, no changes to the rest of CaSHL and no
changes at all to the rendering modules were required in order to augment SH lighting
to take normal-maps into account!
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6.4.4 Implementing SHL Filtering

As the two-step dependent texture lookups that were used throughout section 5.6 make
perspective correct filtering practically impossible with current 3D-graphics accelerator
hardware, we simply employ bilinear filtering by quadruple multi-sampling. Listing 5
was augmented accordingly, and we obtain the following:

1 const unsigned long NR OF SH COEFFS=
FaceT::SHLMapInfoT::NrOfBands∗FaceT::SHLMapInfoT::NrOfBands;

const unsigned long NrOfPixels=(NR OF SH COEFFS+3)/4;

5 unsigned long PixelNr;
static char DynamicCode[30000];

sprintf (DynamicCode,
” void main(in float4 InColor : COLOR, \n”

10 ” in float2 InTexCoord Diff : TEXCOORD0, \n”
” in float2 InTexCoord SHLMap : TEXCOORD1, \n”
” out float4 OutColor : COLOR, \n”
” uniform float4 LightsourceSHLCoeffs[%lu], // Light coeffs in 4−tuples. \n”
” uniform float NrOfColumns, // # vector columns in the SHLCoeffTable. \n”

15 ” uniform float TableWidth, // Width of the SHLCoeffTable, in pixels. \n”
” uniform sampler2D DiffuseMapSampler, \n”
” uniform sampler2D IndicesSampler, \n”
” uniform sampler2D SHLCoeffTableSampler) \n”
” { \n”

20 ” const float4 DiffuseC=tex2D(DiffuseMapSampler, InTexCoord Diff); \n”
” const float SOfs=0.25/%lu.0; // 1/4pixel sample offset in texture space . \n”
” const float4 Indices[4]= \n”
” { \n”
” tex2D(IndicesSampler, InTexCoord SHLMap + float2(−SOfs, SOfs)), \n”

25 ” tex2D(IndicesSampler, InTexCoord SHLMap + float2( SOfs, SOfs)), \n”
” tex2D(IndicesSampler, InTexCoord SHLMap + float2( SOfs, −SOfs)), \n”
” tex2D(IndicesSampler, InTexCoord SHLMap + float2(−SOfs, −SOfs)) \n”
” }; \n”
” \n”

30 ” float Total=0.0; \n”
” \n”
” // A simple optimization. This code unfort . crashes the Cg compiler, though! \n”
” if ( all (Indices[0]==Indices[1]) && \n”
” all (Indices[1]==Indices[2]) && all(Indices[2]==Indices [3])) \n”

35 ” { \n”
” // All four indices are identical , so just look ONCE into the table of \n”
” // representatives , and use the result for all four samples. \n”
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” // (This is the same situation as with no multi−sampling at all.) Done. \n”
39 ” float Result=0.0; \n”
40 ” float4 Index=Indices[0]; \n”

” \n”
” // Essentially same code as below. \n”
” Index.r=Index.r∗255.0/256.0; // Correct the scale . \n”
” Index.g=Index.g∗255.0∗%lu.0/TableWidth; // Correct the scale. \n”

45 ” const float PixelOffsetX=1.0/TableWidth; \n”,
NrOfPixels>0 ? NrOfPixels : 1, SHLMapT::SIZE S, NrOfPixels);

for (PixelNr=0; PixelNr<NrOfPixels; PixelNr++)
{

50 sprintf (DynamicCode+strlen(DynamicCode),
”Result+=dot(4.0∗(tex2D(SHLCoeffTableSampler, Index.gr)−0.5),”
” LightsourceSHLCoeffs[%2lu]);”,
PixelNr);

if (PixelNr+1<NrOfPixels) strcat(DynamicCode, ” Index.g+=PixelOffsetX;”);
55 strcat (DynamicCode, ”\n”);

}

sprintf (DynamicCode+strlen(DynamicCode),
” Total=Result; \n”

60 ” } \n”
” else \n”
” { \n”
” for (int SampleNr=0; SampleNr<4; SampleNr++) \n”
” { \n”

65 ” float Result=0.0; \n”
” float4 Index=Indices[SampleNr]; \n”
” \n”
” // Still unrolling the for−loop, but this time exactly as needed! \n”
” Index.r=Index.r∗255.0/256.0; // Correct the scale . \n”

70 ” Index.g=Index.g∗255.0∗%lu.0/TableWidth; // Correct the scale. \n”
” const float PixelOffsetX=1.0/TableWidth; \n”,
NrOfPixels);

for (PixelNr=0; PixelNr<NrOfPixels; PixelNr++)
75 {

sprintf (DynamicCode+strlen(DynamicCode),
”Result+=dot(4.0∗(tex2D(SHLCoeffTableSampler, Index.gr)−0.5),”
” LightsourceSHLCoeffs[%2lu]);”,
PixelNr);

80 if (PixelNr+1<NrOfPixels) strcat(DynamicCode, ” Index.g+=PixelOffsetX;”);
strcat (DynamicCode, ”\n”);
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}
83

strcat (DynamicCode,
85 ” Total+=0.25∗Result; \n”

” } \n”
” } \n”
” \n”
” Total=clamp(Total, 0.0, 1.0); \n”

90 ” \n”
”// OutColor=float4(Total.xxx, 1.0); // For debugging. \n”
” OutColor=DiffuseC∗InColor∗float4(Total.xxx, 1.0); \n”
” } \n”);

95 FragmentShader30 SHL Compressed=UploadCgProgram(CG PROFILE FP30,
DynamicCode);

Listing 6: C++ code for generating Cg code with multi-sampling on demand.

The above listing enhances listing 5 by adding quadruple multi-sampling. The multi-
sampling implementation also contains an optimization that is based on the idea that
some of the four dependent texture lookups are redundant and can be saved in the case
that two or more indices are identical (and thus refer to the same values in the lookup
texture). In order to keep the fragment program simple, I decided to only cover the case
that all four indices are identical (see lines 33 and 34 in listing 6), which reduces the
multi-sampling problem to the same single-sampling problem that was already addressed
in listing 5.

Unfortunately, lines 33 and 34 in listing 6 trigger a bug in the Cg compiler (see section
6.7 for full details). This implied that I had to disable the optimized section of code
(lines 33 to 58) in listing 6, and gather all observations and results from the generic
general-case code only.

6.5 The Ca3DE Material System

The theory that has been presented in the previous chapters leads, when implemented
trivially, to a huge amount of source code that suffers from a lot of practical issues,
mostly with regard to software design. In my initial implementations, I found that
the complexity that comes with fragment- and vertex-shaders on programmable GPUs
tends to explode easily: It might well happen that you find yourself writing essentially
the same code over and over again, duplicating it for all variants of GPUs, for variants of
windowing APIs, for various types of models, for various platforms, for new effects, and
so on. At the same time, code and resource management grows to levels of complexity
that are almost impossible to handle.

Therefore, I also created a new Material System for the Ca3D-Engine within the course
of this thesis (partly as a by-product) in order to face all these problems. The goals of
the Material System are as follows:
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1. Provide a thorough and clean software design, and localize all rendering know-how.
The user code becomes only responsible for the “What is rendered?”, the MatSys is
responsible for the “How is it rendered?”. Thus, the rendering code becomes fully
separated from the user code, which doesn’t even have to #include "GL/gl.h"
etc. any more.

2. Make the interface independent from the underlying platforms and APIs. Note
that this goal is entirely independent from goal 1.

3. Facilitate providing implementations and support for each platform and API, in-
cluding such that did not exist when the Material System was designed. For
example, separate interface implementations for OpenGL 1.2 and 2.0, DirectX 7
to 9, software rendering, consoles, etc. are desirable.

4. Make it equally easy to add new rendering effects that were not planned when the
MatSys was designed.

5. Provide proper and thorough resource management, including shared resource han-
dling like common texture images etc.

6. Make surface properties “scriptable”, that is, easily and externally controllable via
human-readable text files.

The Ca3DE Material System achieves all these goals. Its details are presented in great
depth in [Fuc04b].

6.6 Porting Ca3DE to the Linux platform

One of the key requirements for implementing the contents of this thesis within the
framework of the Ca3D-Engine was that all related components compiled and worked
on the Linux operating system. While at the start of this thesis Ca3DE neither featured
hardware-accelerated lighting nor lighting with Spherical Harmonics, it was a pure Mi-
crosoft Windows based application suite until then. Although many of its components
were written with cross-platform portability in mind right from the start, the port to
Linux proved to be a challenging but very interesting and highly educational task. A
very useful resource in this regard is [LSH01], which is a good introduction to Linux
programming especially if you have previous knowledge about Windows programming.

The following is a list of key problems that I encountered during the porting, where the
specifics of Windows programming are opposed to the specifics of Linux programming.
While this section is not strictly a contribution to the contents of this thesis, it might
be helpful for anyone who faces a similar porting task.

• The compiler that I used on Linux was g++, while on Windows, the free OpenWat-
com compiler (http://www.OpenWatcom.org) was employed. Some of the differ-
ences below are due to the differences in the compilers and their standard libraries,
others are due to the differences in the underlying operating systems.
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• Case independent comparison of character pointers (strings): On Windows,
you can either use stricmp() or the equivalent strcmpi(), whereas on Linux,
strcasecmp() is defined. I eventually encapsulated them all in a small auxil-
iary library that acts as a compatibility layer, but the best long-term solution is
probably to directly employ the std::string class from the C++ standard li-
brary (which is unfortunately not yet available for OpenWatcom), or the similar
wxString class from the wxWidgets project (http://www.wxWidgets.org), which
is available for both compilers and solves the problem perfectly.

• Structure packing and member alignment: Sometimes, the contents of a struct
are directly written from memory to disk and read back. This only works if all
compilers align the members of the struct in the same fashion. As the compilers
normally align the contents of structures onto 2, 4 or 8 byte boundaries for opti-
mization by adding the appropriate number of padding bytes between individual
members of the struct, the best way to resolve this is to explicitly force structure
packing, which yields tight alignment. Structure packing is enforced by decorating
the struct declaration with the _Packed keyword for the OpenWatcom compiler
and the __attribute__ ((packed)) expression for the g++ compiler.

• Opening a window with support for OpenGL rendering is conceptually similar on
both systems, but differs much in the underlying windowing APIs. The differences
are best seen in the respective source code, which contains detailed comments.

• Mouse and keyboard input. This has been the toughest problem I faced during
the entire porting, because I used the DirectInput component of Microsoft DirectX
for this purpose on the Windows platform. There is no equivalent for DirectX on
Linux. Therefore, I use the regular X window message queue for mouse and key-
board input under Linux, and continue to use DirectInput on Windows. Offering
a common interface to other source code for both approaches required a significant
redesign and rewrite of the previous user input handling code.

• Many other parts like the OpenGL rendering, networking with Berkley network
sockets, sound support etc. were all written with portability in mind right from
the start, and thus provided a much easier porting experience than the mouse and
keyboard input. The only slight problems were with the networking APIs, where
error constants are prefixed with WSAE on Windows and simply E on Linux, and the
specification of the select() function differs on both systems: The first parameter
of select() is ignored on Windows, and has to be the highest socket number +1
on Linux, the violation of which silently introduces a problem which is very hard
to diagnose.

• The scope of variables that are defined in for-loops ends at the closing brace in
g++ but used to extend beyond with OpenWatcom. While OpenWatcom modi-
fied this in its latest release, at that time I was forced to replace many cases of
for (int i=0; ...) with int i; for (i=0; ...).
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• The default size of enums differs, and can even change with different compiler
options such as for space optimization. This in turn causes dangerous problems
when enums are read from and written to files on disk that are used on both
platforms, and has to be worked around explicitly, e.g. by casting them to types
of known and constant size.

• OpenWatcom provides a compiler specific _splitpath() function that splits a
full file name into the path, the base name, and the extension. The g++ libs do
not seem to provide anything comparable, and thus I had to implement a similar
function on Linux myself.

• The function names for functions that take variable argument lists differ. E.g.
there is _vbprintf() on Windows, and vsnprintf() on Linux. Once more, the
best remedy is probably to switch to the appropriate C++ string classes directly.

• While the Win32 API provides a function SystemTime(), there is nothing directly
equivalent on Linux. However, both platforms have the time() and str???time()
functions, which can also replace SystemTime() on Windows.

• There are no equivalents for getch() and kbhit() on Linux, which are sometimes
quite useful despite the fact that they are possibly not multitasking friendly. Linux
has getchar(), which however does not behave like getch() on Windows. Instead
of employing some ‘dirty hacks’ in order to get the desired behaviour on Linux any-
way, I eventually worked around the problem and now simply omit these function
on Linux. The best solution in this case is probably to turn the affected programs
into full windowing apps entirely, preferably using wxWidgets as the underlying
windowing system.

• Using dynamic link libraries comes with many inherent subtleties on both systems
anyway, and even more subtle are the differences between Windows and Linux dy-
namic link libraries. It took me a very long time to figure out the related techniques
for those alone. Please refer to the code and makefiles for full information.

• Both compilers have some “lint” capabilities, where most of which are common to
both compilers, but each also has nice features that the other doesn’t have. g++
detects using the use of "%u" within a printf() format string when the respective
argument is a long unsigned integer, and "%lu" is actually required. It also warns
about comparisons between signed and unsigned variables, and the use of variables
of type char as array indices. Another beneficial feature of g++ is that it enforces
proper function exception specifications both at compile and run time.

6.7 Implementation Issues

The implementation of dynamic lighting that is treated in section 4.5 has not been as
smooth as one might expect. Besides all the problems and bugs that I take on myself
(all fixed in the final release), there were also several issues that were either inherent
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Figure 29: A blocky specular highlight on an NVidia NV2X GPU.

in the underlying technologies, or even bugs in the 3D graphics drivers. Whenever I
encountered problems with the 3D graphics drivers, I contacted the respective manu-
facturer (NVidia or ATI) and collaborated with them to get the problems fixed. In all
cases, I either got an acknowledgement that the issue was actually a driver bug or other
software problem with the manufacturer, or was able to reproduce the problem even
with the manufacturers very own (demo) software.

Below I present a list of the most subtle issues that are either inherent to the technology
and thus cannot really be fixed at all, or are driver-related and whose fix was only
available after the writing of this document. None of these issues is really a death
sentence, but several of them took me days and weeks to diagnose and fix.

Blocky Specular Highlights on early generation GPUs

Smooth and planar surfaces with high specular reflectivity exhibit specular highlights
that look somewhat gross and “blocky”. An example of this behaviour is the light blue
specular highlight that can be seen in figure 29. The cause for the blocky appearance is
the fact that on GPUs that do not directly support exponentiation (as for example by
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a pow() function), the rise of the specular term (N �H)n to the n-th power has to be
computed by other means.

One such means is to encode the pow() function for a fixed exponent in a
one-dimensional texture, and to compute the exponentiation by a simple texture
lookup. Especially ATI presents a clever trick with its ATI_fragment_shader
and EXT_vertex_shader OpenGL extensions at http://www.ati.com/developer/
R8500PointlightShader.html for Radeon 8500+ GPUs that employs “NHHH” lookup
textures for solving the problem even more elegantly. Unfortunately, though, none of
these lookup techniques can be brought forward to NVidia GPUs of the same generation
(NV2X), as these GPUs are further restricted in their texture lookups. Moreover, as
this generation of GPUs is rendered obsolete by more sophisticated GPUs that provide
a pow() function directly, I did not take the effort to actually implement the lookup
technique for the ATI rendering path in Ca3DE.

Another means to compute exponentiation that works both on NV2X and Radeon
8500+ GPUs is to simulate it by repeated multiplication. Here is the relevant section
from the appropriate Cg fragment shader:

const float3 HalfwayDir=2.0∗(texCUBE(NormalizeCubeForHalfwayVector,
InHalfwayVector).xyz−0.5);

const float3 Normal =2.0∗(tex2D(NormalMapSampler,
InTexCoord norm).xyz−0.5);

float spec=saturate(dot(Normal, HalfwayDir));

spec=spec∗spec; // Simulate spec=pow(spec, 32.0);
spec=spec∗spec;
spec=spec∗spec;
spec=spec∗spec;
spec=spec∗spec;

Listing 7: Exponentiation by repeated multiplication.

While this practise is highly questionable from a performance point-of-view, as the previ-
ously mentioned lookup methods may be a lot faster than the repeated register combiner
operations here, the repeated multiplication in combination with the limited bit depth
of the GPU registers is the cause for the blocky appearance of the specular highlights.

I’ve made considerable efforts to overcome this problem, especially on NV2X GPUs.
However, as these GPUs do not even provide a chance to dodge to the previously men-
tioned means of simulating the exponentiation by a 1D texture lookup, it seems that
the problem cannot be properly be solved at all (for NV2X GPUs), or at least I’ve not
become aware of any such solution during my entire work on the thesis.
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Torn and Distorted Specular Highlights

Another artifact that occurs with specular highlights and the presence of normalization
cube-maps (mostly used on early generation GPUs) is the torsion and distortion of the
shape of the specular highlights. Figure 30 shows three examples of this problem with
both a single polygon that shows a mildly distorted highlight, as well as an extreme case
where a highlight that is cast across two adjacent polygons is highly distorted. (The
subfigures also happen to repeat the blockiness of the highlights as discussed above.)
In the figure, the left series of images shows the problem before the fix, the right half
showing the improved highlights after the fix.

The cause for the distortions in figure 30 was actually a proper and correct implemen-
tation: In order to compute the sub-term ( ~N � ~H)n of the specular contribution of the
Phong lighting equation, I computed the halfway vector ~H in the vertex program for
NV2X GPUs as follows:

const float3 EyeDir =normalize(EyePos −InPos.xyz);
const float3 LightDir=normalize(LightPos−InPos.xyz);

OutHalfwayVector=mul(RotMat, EyeDir+LightDir);
Listing 8: Halfway vector computation in the vertex program.

This section of Cg vertex program computes first the vector from the current vertex
position to the eye, then the vector from the vertex position to the light source, and
finally the unnormalized halfway vector by adding the normalized eye vector and the
normalized light vector. The final multiplication with RotMat is just for rotating the
halfway vector into tangent space, and not relevant for the current discussion. The
normalization of the just computed halfway vector (and the rest of computing ( ~N� ~H)n)
is deferred to the appropriate Cg fragment shader.

Here comes the crucial point: The stage of the rendering pipeline that is between
the GPU vertex and fragment programs assembles and rasterizes the polygon and inter-
polates the previously computed halfway vector across the polygon. The interpolated
values are then accessible in the fragment shader. With the unnormalized halfway vec-
tors given as input to the interpolation, their lengths are according to the above excerpt
of vertex program between 0.0 and 2.0, and thus generally extremely short even before
the interpolation begins. Especially if the light vector and eye vector initially point
in roughly opposite directions, the length of the halfway vector easily gets near zero.
The (linear) interpolation operation across the polygon then tends to yield even shorter
interpolated vectors. As a result, the lookup into the normalization cube-map in the frag-
ment program for normalizing the halfway vector is performed with a near-zero length
input. Degenerate input to cube-map lookups may however return undefined results. It
is the undefined results that cause the observable artifacts that constitute the distorted
specular highlights.

Fixing the matter in a straightforward and robust manner is simple: Instead of com-
puting ~Hold = ~L

|~L|
+ ~E

| ~E|
as above, multiply everything with |~L|. This works because ~H
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Torn and distorted specular highlights. The images on the left show the orig-
inal appearance of the artifacts, the images on the right show the appropriate situation
after the lookup into the normalization cube-map was fixed.
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is initially (in the vertex program) computed as an unnormalized vector anyway, and
the normalization is deferred until after interpolation to the cube-map lookup, where
a much longer vector is desired. Thus, compute ~Hnew = ~L + ~E

| ~E|
|~L|. The new vertex

program becomes

const float3 LightVector =LightPos−InPos.xyz;
const float LightVecLen =length(LightVector);
const float3 EyeVectorScaled=normalize(EyePos−InPos.xyz)∗LightVecLen;

OutHalfwayVector=mul(RotMat, EyeVectorScaled+LightVector);

Listing 9: Improved halfway vector computation.

This fixes the problem.
Note that this problem only occurs when the normalization of ~H is performed by a

normalization cube-map lookup. When the normalization is instead performed with e.g.
the Cg normalize() function (that is e.g. supported on NV3X and newer GPUs), no
suffering from too short input vectors is experienced, and thus the problem is avoided
right at its source.

Moiré patterns and wrong pixels on ATI Radeon GPUs

An entire series of strange problems occurs on ATI Radeon graphics boards on which
I employ the ATI_fragment_shader and EXT_vertex_shader OpenGL extensions for
rendering.

Although hardly noticeable, there were still wrong pixels observable on ATI Radeon
9200 boards. Figure 31(a) shows such wrong pixels even in the midst of otherwise
perfectly valid polygons. For reference, 31(b) shows the underlying polygonal tessellation
of the same scene.

Another problem observed on the Radeon 9200 series is shown in figure 31(c): The
flicker of entire polygons. The occurrence of this effect is very rare. Sometimes it occurs
every few seconds, sometimes only every few minutes, but most often not at all. It took
me a good deal of patience and several dozen screenshots in order to catch figure 31(c).
Figure 31(d) shows the correct image for reference.

A third problem that was never observed on the Radeon 9200 or any other series
based on the same GPU, but on basically all newer boards like the 9700 and 9800 series
is demonstrated in figure 31(e) and 31(f). This is the most severe and noticeable of all.

I invested considerable effort to make sure that none of these problems was indeed my
own fault, e.g. by bad programming or by mis-reading the extension specs. However,
especially the third, most significant of the above problems can be reproduced with one
of ATI’s very own demo programs. Contrary to my own implementation, which is based
on OpenGL, their program is based on DirectX. This strongly indicates that the problem
is indeed with the driver rather than the application.
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(a) (b)

(c) (d)

(e) (f)

Figure 31: Several display problems on ATI Radeon graphics boards.
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Issues with the Cg compilers

The final Cg fragment program for Spherical Harmonic Lighting that has been discussed
in section 5.8 features decompression of SHL values, a variable number of SHL coefficients
by procedurally generated code, and quadruple subsampling. Unfortunately, this most
sophisticated of all GPU programs in my thesis caused the NVidia Cg compiler v1.1
to behave erroneously. Both the dynamic run-time as well as the offline command-line
compilers were affected. Symptoms included the reporting of internal compiler errors
or perfectly innocent statements to be syntactically or semantically wrong, and thus
prematurely abort the compilation. Once more, I invested a lot of time in finding a
work-around for this problem, to no avail.

More precisely, lines 33 and 34 in listing 6

33 if ( all (Indices[0]==Indices[1]) &&
all (Indices[1]==Indices[2]) && all(Indices[2]==Indices [3])) // ...

yield the compiler error “Internal error C9999 (92): Expected a scalar
constant but found something else.”. In fact, replacing this with

33 if ( false) // ...

gets proper acceptance, whereas the simple change to

33 const bool myBool=false;
if (myBool) // ...

exhibits the previous problem.
Moreover, upgrading from Cg SDK version 1.1 to version 1.2, which I hoped would

solve the problem, proved to be unfeasible: Despite the documentation claims to the
contrary, version 1.2 seems to be incompatible and non-backwards compatible to version
1.1. I did not manage to successfully upgrade to version 1.2 even after hours and days
of effort. Error messages included more internal errors like “Unknown builtin vmath.”
even for the smallest (and correct) programs.

However, the Cg command-line compiler in version 1.2 managed to compile the source
code properly for which version 1.1 had failed. I therefore decided to pre-compile the
source code to GPU assembly in this way, but stay with version 1.1 of the Cg run-time
otherwise. Of course, pre-compiling in turn defeated the benefits of the procedurally
created code (i.e. the ability to deal with an arbitrary number of SH coefficients), as
a constant for the number of coefficients has to be preselected. However, I decided to
create a special-case treatment for this case rather than let this chain of bugs stop my
research.

Consequently, I pre-compiled the most common case of 4 SHL bands (16 coefficients)
offline into assembly, and changed the main C++ code to choose the pre-compiled but
correct assembly whenever 4 SHL bands are used, and to fall back to the actually in-
tended (but wrongly compiled, and thus actually broken) program for any other number
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of SHL bands. This in turn required me to restrict all my tests to 4 SHL bands only,
but that turned out to be not much of a restriction in practise, and of course did not
affect the results and conclusions of the thesis at all.

The pre-compiled assembly comprised 225 instructions. Here is an excerpt from the
first few lines:

1 DECLARE LightsourceSHLCoef fs$0 ;
DECLARE LightsourceSHLCoef fs$1 ;
DECLARE LightsourceSHLCoef fs$2 ;
DECLARE LightsourceSHLCoef fs$3 ;

5 DECLARE NrOfColumns ;
DECLARE TableWidth ;
ADDR R0 . xy , f [TEX1 ] . xyxx , { −0 .0009765625 , 0 .0009765625} . xyxx ;
TEX R0 , R0 . xyxx , TEX1, 2D;
MULR R1 . x , R0 . x , { 2 5 5 } . x ;

10 MULR R1 . x , R1 . x , {0 . 0 0 390625} . x ;
MULR R1 . y , R0 . x , { 2 5 5 } . x ;
MULR R1 . y , R1 . y , {0 . 0 0 390625} . x ;
MOVR R2 . yzw , R0 . yyzw ;
MOVR R2 . x , R1 . x ;

15 ADDR R3 . xy , f [TEX1 ] . xyxx , {0 . 0009765625 , 0 . 0009765625} . xyxx ;
TEX R3 , R3 . xyxx , TEX1, 2D;
SEQR H0 , R0 , R3 ;
MULX H1 . x , H0 . x , H0 . y ;
MULX H1 . x , H1 . x , H0 . z ;

20 MULX H0 . x , H1 . x , H0 .w;
MOVR R0 . x , R1 . y ;
MULR R1 . x , R3 . x , { 2 5 5 } . x ;
MULR R1 . x , R1 . x , {0 . 0 0 390625} . x ;
. . .

Listing 10: The beginning of the precompiled fragment shader code.

In summary, a special-case work-around was created to face two independent issues
with the NVidia Cg suites: Version 1.1 was not able to compile this thesis’s most sophis-
ticated fragment program, while an upgrade to version 1.2 was unfeasible for reasons I
could not eventually determine. This is true for all supported platforms (Windows and
Linux).

My intention is to provide a complete new renderer that is based on the OpenGL
Shading Language (GLSL) in the future. This renderer will replace the Cg based ren-
derer, and I have good faith that it will avoid the aforementioned problems right from
the start.
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This thesis presented three different methods for real-time lighting in environments that
are a composition of static and dynamic (animated) elements.

It turned out that dynamic lighting on dedicated hardware is well founded on the
Phong shading and illumination model (section 4). It can be augmented with stencil
shadow volumes. Section 4.3.1 showed a method for quick shadow volume determination
with very large BSP models that represent the hull of entire worlds. The strengths of
this technique are that it is able to treat all components in a unified fashion and no
inherent preprocessing is required. That means that both animated as well as static
components are lit uniquely, and all cast and receive shadows to and from all others.
The weakness is that the physical plausibility is marginal, which can often be observed
in the final images.

While lighting with light-maps (section 3) is straightforward in principle, the light-
maps may be created by means of radiosity algorithms. This results in very realistic
images. Unfortunately, the method works best with fully static scenes, where neither
light sources nor geometry change in any of their attributes (e.g. light intensity and
color, position of geometric objects, etc.). Dynamic objects like player models that are
put into the scenes after preprocessing can neither participate in lighting nor cast any
shadows. The tricks and hacks that are required to obtain (fake) lighting and shadows
for animated objects are, in any case, outside the scope of this thesis.

For Spherical Harmonics Lighting (section 5), a relatively new field of investigation,
it turned out during my research that shooting-based radiosity solutions (CaLight) and
precomputing SH coefficients with bounce transfer (CaSHL) can be considered as par-
tially comparable problems and it turns out that algorithms can be achieved that have
analogous implementations. The main difference between radiosity and SH computa-
tions is that patches are associated with light energy in the radiosity case, whereas they
are associated with light transfer functions, represented by spherical harmonics coeffi-
cients, in the SH case. The development and execution of this analogy is one of the main
contributions of this thesis. To the best of my knowledge, no other implementation of
SH lighting that is “patch based” and employs this analogy exists. Similar to the light-
maps method, SHL requires expensive preprocessing of the scene. It does not inherently
work with local light sources, but light sources in the far range (like the celestial bodies)
can be arbitrarily dynamic, that is, change in color, position and shape. If keyframe
interpolation is an option, the method can even be applied to animated objects. Each
such object would be properly lit and cast shadows onto itself, but it would not cast nor
receive shadows from other objects.
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[AKDS04] Thomas Annen, Jan Kautz, Frédo Durand, and Hans-Peter Seidel. Spheri-
cal harmonic gradients for mid-range illumination. In Henrik Wann Jensen
and Alexander Keller, editors, Rendering Techniques 2004 Eurographics
Symposium on Rendering, pages 331–336, Norrköping, Sweeden, June
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